如果我有DataFrame这样的:
pd.DataFrame( {"name" : "John",
"days" : [[1, 3, 5, 7]]
})
Run Code Online (Sandbox Code Playgroud)
给出这个结构:
days name
0 [1, 3, 5, 7] John
Run Code Online (Sandbox Code Playgroud)
如何将其扩展到以下?
days name
0 1 John
1 3 John
2 5 John
3 7 John
Run Code Online (Sandbox Code Playgroud)
unu*_*tbu 15
您可以使用df.itertuples迭代每一行,并使用列表推导将数据重新整形为所需的形式:
import pandas as pd
df = pd.DataFrame( {"name" : ["John", "Eric"],
"days" : [[1, 3, 5, 7], [2,4]]})
result = pd.DataFrame([(d, tup.name) for tup in df.itertuples() for d in tup.days])
print(result)
Run Code Online (Sandbox Code Playgroud)
产量
0 1
0 1 John
1 3 John
2 5 John
3 7 John
4 2 Eric
5 4 Eric
Run Code Online (Sandbox Code Playgroud)
Divakar的解决方案,using_repeat是最快的:
In [48]: %timeit using_repeat(df)
1000 loops, best of 3: 834 µs per loop
In [5]: %timeit using_itertuples(df)
100 loops, best of 3: 3.43 ms per loop
In [7]: %timeit using_apply(df)
1 loop, best of 3: 379 ms per loop
In [8]: %timeit using_append(df)
1 loop, best of 3: 3.59 s per loop
Run Code Online (Sandbox Code Playgroud)
以下是用于上述基准的设置:
import numpy as np
import pandas as pd
N = 10**3
df = pd.DataFrame( {"name" : np.random.choice(list('ABCD'), size=N),
"days" : [np.random.randint(10, size=np.random.randint(5))
for i in range(N)]})
def using_itertuples(df):
return pd.DataFrame([(d, tup.name) for tup in df.itertuples() for d in tup.days])
def using_repeat(df):
lens = [len(item) for item in df['days']]
return pd.DataFrame( {"name" : np.repeat(df['name'].values,lens),
"days" : np.concatenate(df['days'].values)})
def using_apply(df):
return (df.apply(lambda x: pd.Series(x.days), axis=1)
.stack()
.reset_index(level=1, drop=1)
.to_frame('day')
.join(df['name']))
def using_append(df):
df2 = pd.DataFrame(columns = df.columns)
for i,r in df.iterrows():
for e in r.days:
new_r = r.copy()
new_r.days = e
df2 = df2.append(new_r)
return df2
Run Code Online (Sandbox Code Playgroud)
phi*_*hem 12
Pandas 0.25 以来的新功能,您可以使用该功能 explode()
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.explode.html
import pandas as pd
df = pd.DataFrame( {"name" : "John",
"days" : [[1, 3, 5, 7]]})
print(df.explode('days'))
Run Code Online (Sandbox Code Playgroud)
印刷
name days
0 John 1
0 John 3
0 John 5
0 John 7
Run Code Online (Sandbox Code Playgroud)
这是NumPy的一些东西 -
lens = [len(item) for item in df['days']]
df_out = pd.DataFrame( {"name" : np.repeat(df['name'].values,lens),
"days" : np.hstack(df['days'])
})
Run Code Online (Sandbox Code Playgroud)
如指出要快.@unutbu's solution np.concatenate(df['days'].values)np.hstack(df['days'])
它使用循环理解来提取每个'days'元素的长度,这在运行时必须是最小的.
样品运行 -
>>> df
days name
0 [1, 3, 5, 7] John
1 [2, 4] Eric
>>> lens = [len(item) for item in df['days']]
>>> pd.DataFrame( {"name" : np.repeat(df['name'].values,lens),
... "days" : np.hstack(df['days'])
... })
days name
0 1 John
1 3 John
2 5 John
3 7 John
4 2 Eric
5 4 Eric
Run Code Online (Sandbox Code Playgroud)
一种“本地”熊猫解决方案-我们将列拆成一系列,然后根据索引重新加入:
import pandas as pd #import
x2 = x.days.apply(lambda x: pd.Series(x)).unstack() #make an unstackeded series, x2
x.drop('days', axis = 1).join(pd.DataFrame(x2.reset_index(level=0, drop=True))) #drop the days column, join to the x2 series
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
9134 次 |
| 最近记录: |