Sim*_*mon 6 python time similarity gensim
使用gensim,我想计算文档列表中的相似度.这个库非常适合处理我所拥有的数据量.这些文件都缩减为时间戳,我有一个time_similarity比较它们的功能.gensim但是,使用余弦相似性.
我想知道是否有人之前有过这种情况或者有不同的解决方案.
小智 1
可以通过从接口继承来做到这一点SimilarityABC。我没有找到任何相关文档,但看起来之前已经定义了Word Mover Distance相似性。这是执行此操作的通用方法。您可以通过专门研究您关心的相似性度量来提高其效率。
import numpy
from gensim import interfaces
class CustomSimilarity(interfaces.SimilarityABC):
def __init__(self, corpus, custom_similarity, num_best=None, chunksize=256):
self.corpus = corpus
self.custom_similarity = custom_similarity
self.num_best = num_best
self.chunksize = chunksize
self.normalize = False
def get_similarities(self, query):
"""
**Do not use this function directly; use the self[query] syntax instead.**
"""
if isinstance(query, numpy.ndarray):
# Convert document indexes to actual documents.
query = [self.corpus[i] for i in query]
if not isinstance(query[0], list):
query = [query]
n_queries = len(query)
result = []
for qidx in range(n_queries):
qresult = [self.custom_similarity(document, query[qidx]) for document in self.corpus]
qresult = numpy.array(qresult)
result.append(qresult)
if len(result) == 1:
# Only one query.
result = result[0]
else:
result = numpy.array(result)
return result
Run Code Online (Sandbox Code Playgroud)
要实现自定义相似度:
def overlap_sim(doc1, doc2):
# similarity defined by the number of common words
return len(set(doc1) & set(doc2))
corpus = [['cat', 'dog'], ['cat', 'bird'], ['dog']]
cs = CustomSimilarity(corpus, overlap_sim, num_best=2)
print(cs[['bird', 'cat', 'frog']])
Run Code Online (Sandbox Code Playgroud)
这输出[(1, 2.0), (0, 1.0)].