如何基于另一列的NaN值设置熊猫数据框中的值?

Roc*_*etq 1 python nan python-2.7 pandas

我有以df原始形状命名的数据框(4361, 15)。某些agefm列的值为NaN。只是看看:

> df[df.agefm.isnull() == True].agefm.shape
(2282,)
Run Code Online (Sandbox Code Playgroud)

然后创建新列并将其所有值设置为0:

df['nevermarr'] = 0
Run Code Online (Sandbox Code Playgroud)

所以我想将nevermarrvalue 设置为1,然后在那一行agefm是Nan:

df[df.agefm.isnull() == True].nevermarr = 1
Run Code Online (Sandbox Code Playgroud)

没有改变:

> df['nevermarr'].sum()
0
Run Code Online (Sandbox Code Playgroud)

我究竟做错了什么?

jez*_*ael 5

最好是使用numpy.where

df['nevermarr'] = np.where(df.agefm.isnull(), 1, 0)
print (df)
   agefm  nevermarr
0    NaN          1
1    5.0          0
2    6.0          0
Run Code Online (Sandbox Code Playgroud)

或使用loc==True可以省略:

df.loc[df.agefm.isnull(), 'nevermarr'] = 1
Run Code Online (Sandbox Code Playgroud)

mask

df['nevermarr'] = df.nevermarr.mask(df.agefm.isnull(), 1)
print (df)
   agefm  nevermarr
0    NaN          1
1    5.0          2
2    6.0          3
Run Code Online (Sandbox Code Playgroud)

样品:

import pandas as pd
import numpy as np

df = pd.DataFrame({'nevermarr':[7,2,3],
                   'agefm':[np.nan,5,6]})

print (df)
   agefm  nevermarr
0    NaN          7
1    5.0          2
2    6.0          3

df.loc[df.agefm.isnull(), 'nevermarr'] = 1
print (df)
   agefm  nevermarr
0    NaN          1
1    5.0          2
2    6.0          3
Run Code Online (Sandbox Code Playgroud)