Har*_*hid 11 r ggplot2 confusion-matrix
我有两个混淆矩阵,计算值为真阳性(tp),假阳性(fp),真阴性(tn)和假阴性(fn),对应两种不同的方法.我想把它们表示为

我相信facet grid或facet wrap可以做到这一点,但我发现很难开始.这是与method1和method2相对应的两个混淆矩阵的数据
dframe<-structure(list(label = structure(c(4L, 2L, 1L, 3L, 4L, 2L, 1L,
3L), .Label = c("fn", "fp", "tn", "tp"), class = "factor"), value = c(9,
0, 3, 1716, 6, 3, 6, 1713), method = structure(c(1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L), .Label = c("method1", "method2"), class = "factor")), .Names = c("label",
"value", "method"), row.names = c(NA, -8L), class = "data.frame")
Run Code Online (Sandbox Code Playgroud)
MYa*_*208 14
这可能是一个好的开始
library(ggplot2)
ggplot(data = dframe, mapping = aes(x = label, y = method)) +
geom_tile(aes(fill = value), colour = "white") +
geom_text(aes(label = sprintf("%1.0f",value)), vjust = 1) +
scale_fill_gradient(low = "white", high = "steelblue")
Run Code Online (Sandbox Code Playgroud)
编辑
TClass <- factor(c(0, 0, 1, 1))
PClass <- factor(c(0, 1, 0, 1))
Y <- c(2816, 248, 34, 235)
df <- data.frame(TClass, PClass, Y)
library(ggplot2)
ggplot(data = df, mapping = aes(x = TClass, y = PClass)) +
geom_tile(aes(fill = Y), colour = "white") +
geom_text(aes(label = sprintf("%1.0f", Y)), vjust = 1) +
scale_fill_gradient(low = "blue", high = "red") +
theme_bw() + theme(legend.position = "none")
Run Code Online (Sandbox Code Playgroud)
基于 MYaseen208 的答案的稍微模块化的解决方案。对于大型数据集/多项分类可能更有效:
confusion_matrix <- as.data.frame(table(predicted_class, actual_class))
ggplot(data = confusion_matrix
mapping = aes(x = Var1,
y = Var2)) +
geom_tile(aes(fill = Freq)) +
geom_text(aes(label = sprintf("%1.0f", Freq)), vjust = 1) +
scale_fill_gradient(low = "blue",
high = "red",
trans = "log") # if your results aren't quite as clear as the above example
Run Code Online (Sandbox Code Playgroud)
这是另一个基于 ggplot2 的选项;首先是数据(来自插入符号):
library(caret)
# data/code from "2 class example" example courtesy of ?caret::confusionMatrix
lvs <- c("normal", "abnormal")
truth <- factor(rep(lvs, times = c(86, 258)),
levels = rev(lvs))
pred <- factor(
c(
rep(lvs, times = c(54, 32)),
rep(lvs, times = c(27, 231))),
levels = rev(lvs))
confusionMatrix(pred, truth)
Run Code Online (Sandbox Code Playgroud)
并构建图(在设置“表”时根据需要替换您自己的矩阵):
library(ggplot2)
library(dplyr)
table <- data.frame(confusionMatrix(pred, truth)$table)
plotTable <- table %>%
mutate(goodbad = ifelse(table$Prediction == table$Reference, "good", "bad")) %>%
group_by(Reference) %>%
mutate(prop = Freq/sum(Freq))
# fill alpha relative to sensitivity/specificity by proportional outcomes within reference groups (see dplyr code above as well as original confusion matrix for comparison)
ggplot(data = plotTable, mapping = aes(x = Reference, y = Prediction, fill = goodbad, alpha = prop)) +
geom_tile() +
geom_text(aes(label = Freq), vjust = .5, fontface = "bold", alpha = 1) +
scale_fill_manual(values = c(good = "green", bad = "red")) +
theme_bw() +
xlim(rev(levels(table$Reference)))
Run Code Online (Sandbox Code Playgroud)

# note: for simple alpha shading by frequency across the table at large, simply use "alpha = Freq" in place of "alpha = prop" when setting up the ggplot call above, e.g.,
ggplot(data = plotTable, mapping = aes(x = Reference, y = Prediction, fill = goodbad, alpha = Freq)) +
geom_tile() +
geom_text(aes(label = Freq), vjust = .5, fontface = "bold", alpha = 1) +
scale_fill_manual(values = c(good = "green", bad = "red")) +
theme_bw() +
xlim(rev(levels(table$Reference)))
Run Code Online (Sandbox Code Playgroud)

这是一个非常古老的问题,但似乎仍然有一个非常直接的解决方案使用 ggplot2 尚未提及。
希望它可能对某人有帮助:
cm <- confusionMatrix(factor(y.pred), factor(y.test), dnn = c("Prediction", "Reference"))
plt <- as.data.frame(cm$table)
plt$Prediction <- factor(plt$Prediction, levels=rev(levels(plt$Prediction)))
ggplot(plt, aes(Prediction,Reference, fill= Freq)) +
geom_tile() + geom_text(aes(label=Freq)) +
scale_fill_gradient(low="white", high="#009194") +
labs(x = "Reference",y = "Prediction") +
scale_x_discrete(labels=c("Class_1","Class_2","Class_3","Class_4")) +
scale_y_discrete(labels=c("Class_4","Class_3","Class_2","Class_1"))
Run Code Online (Sandbox Code Playgroud)