Bil*_*ill 6 python dataframe pandas
我想用我准备的系列形式的查找表生成的一组更准确/完整的值替换 DataFrame 中的一列值。
我以为我可以这样做,但结果并不如预期。
这是我要修复的数据帧:
In [6]: df_normalised.head(10)
Out[6]:
code name
0 8 Human development
1 11
2 1 Economic management
3 6 Social protection and risk management
4 5 Trade and integration
5 2 Public sector governance
6 11 Environment and natural resources management
7 6 Social protection and risk management
8 7 Social dev/gender/inclusion
9 7 Social dev/gender/inclusion
Run Code Online (Sandbox Code Playgroud)
(注意第 2 行中缺少的名称)。
这是我创建的用于修复的查找表:
In [20]: names
Out[20]:
1 Economic management
10 Rural development
11 Environment and natural resources management
2 Public sector governance
3 Rule of law
4 Financial and private sector development
5 Trade and integration
6 Social protection and risk management
7 Social dev/gender/inclusion
8 Human development
9 Urban development
dtype: object
Run Code Online (Sandbox Code Playgroud)
这是我认为可以做到的方式:
In [21]: names[df_normalised.head(10).code]
Out[21]:
code
8 Human development
11 Environment and natural resources management
1 Economic management
6 Social protection and risk management
5 Trade and integration
2 Public sector governance
11 Environment and natural resources management
6 Social protection and risk management
7 Social dev/gender/inclusion
7 Social dev/gender/inclusion
dtype: object
Run Code Online (Sandbox Code Playgroud)
但是,我希望上面的结果系列与 df_normalised 的索引(即 0、1、2、3)具有相同的索引,而不是基于代码值的索引。
所以我不确定如何用这些系列值替换 df_normalised 中“name”列中的原始值,因为索引不一样。
顺便说一句,如何有一个具有上述重复值的索引?
您可以使用map()函数:
In [38]: df_normalised['name'] = df_normalised['code'].map(name)
In [39]: df_normalised
Out[39]:
code name
0 8 Human development
1 11 Environment and natural resources management
2 1 Economic management
3 6 Social protection and risk management
4 5 Trade and integration
5 2 Public sector governance
6 11 Environment and natural resources management
7 6 Social protection and risk management
8 7 Social dev/gender/inclusion
9 7 Social dev/gender/inclusion
Run Code Online (Sandbox Code Playgroud)