如何有效地对DatetimeIndex重新采样

Dav*_*eld 4 python pandas

熊猫resample在系列/数据框上有一种方法,但是似乎没有办法DatetimeIndex自行对其重新采样?

具体来说,我有一个Datetimeindex可能缺少日期的每日,我想以每小时频率重新采样一次,但只包括原始每日索引中的日期。

有没有比下面的尝试更好的方法了?

In [56]: daily_index = pd.period_range('01-Jan-2017', '31-Jan-2017', freq='B').asfreq('D')

In [57]: daily_index
Out[57]: 
PeriodIndex(['2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05',
             '2017-01-06', '2017-01-09', '2017-01-10', '2017-01-11',
             '2017-01-12', '2017-01-13', '2017-01-16', '2017-01-17',
             '2017-01-18', '2017-01-19', '2017-01-20', '2017-01-23',
             '2017-01-24', '2017-01-25', '2017-01-26', '2017-01-27',
             '2017-01-30', '2017-01-31'],
            dtype='int64', freq='D')

In [58]: daily_index.shape
Out[58]: (22,)

In [59]: hourly_index = pd.DatetimeIndex([]).union_many(
    ...:     pd.date_range(day.to_timestamp('H','S'), day.to_timestamp('H','E'), freq='H')
    ...:     for day in daily_index
    ...: )

In [60]: hourly_index
Out[60]: 
DatetimeIndex(['2017-01-02 00:00:00', '2017-01-02 01:00:00',
               '2017-01-02 02:00:00', '2017-01-02 03:00:00',
               '2017-01-02 04:00:00', '2017-01-02 05:00:00',
               '2017-01-02 06:00:00', '2017-01-02 07:00:00',
               '2017-01-02 08:00:00', '2017-01-02 09:00:00',
               ...
               '2017-01-31 14:00:00', '2017-01-31 15:00:00',
               '2017-01-31 16:00:00', '2017-01-31 17:00:00',
               '2017-01-31 18:00:00', '2017-01-31 19:00:00',
               '2017-01-31 20:00:00', '2017-01-31 21:00:00',
               '2017-01-31 22:00:00', '2017-01-31 23:00:00'],
              dtype='datetime64[ns]', length=528, freq=None)

In [61]: 22*24
Out[61]: 528

In [62]: %%timeit
    ...: hourly_index = pd.DatetimeIndex([]).union_many(
    ...:     pd.date_range(day.to_timestamp('H','S'), day.to_timestamp('H','E'), freq='H')
    ...:     for day in daily_index
    ...: )
100 loops, best of 3: 13.7 ms per loop
Run Code Online (Sandbox Code Playgroud)

更新:

我对@NTAWolf的答案进行了细微改动,其性能相似,但是如果输入的日期未排序,则不会重新排列输入日期

def resample_index(index, freq):
    """Resamples each day in the daily `index` to the specified `freq`.

    Parameters
    ----------
    index : pd.DatetimeIndex
        The daily-frequency index to resample
    freq : str
        A pandas frequency string which should be higher than daily

    Returns
    -------
    pd.DatetimeIndex
        The resampled index

    """
    assert isinstance(index, pd.DatetimeIndex)
    start_date = index.min()
    end_date = index.max() + pd.DateOffset(days=1)
    resampled_index = pd.date_range(start_date, end_date, freq=freq)[:-1]
    series = pd.Series(resampled_index, resampled_index.floor('D'))
    return pd.DatetimeIndex(series.loc[index].values)
Run Code Online (Sandbox Code Playgroud)
In [184]: %%timeit
     ...: hourly_index3 = pd.date_range(daily_index.start_time.min(), 
     ...:                               daily_index.end_time.max() + 1, 
     ...:                               normalize=True, freq='H')
     ...: hourly_index3 = hourly_index3[hourly_index3.floor('D').isin(daily_index.start_time)]
100 loops, best of 3: 2.97 ms per loop

In [185]: %timeit resample_index(daily_index.to_timestamp('D','S'), freq='H')
100 loops, best of 3: 2.93 ms per loop
Run Code Online (Sandbox Code Playgroud)

Ian*_*anS 5

另一种选择是直接生成每小时索引,然后删除非工作日:

\n\n
hourly_index = pd.date_range('01-Jan-2017', '31-Jan-2017', freq='H')\nhourly_index = hourly_index[hourly_index.dayofweek < 5]\n
Run Code Online (Sandbox Code Playgroud)\n\n
\n\n

性能对比:

\n\n
    \n
  • OP的解决方案:10 loops, best of 3: 44.2 ms per loop
  • \n
  • EdChum的解决方案:1000 loops, best of 3: 1.46 ms per loop
  • \n
  • 我的解决方案:1000 loops, best of 3: 598 \xc2\xb5s per loop
  • \n
\n

  • `pd.date_range('01-Jan-2017', '31-Jan-2017', freq='H')` 结束于 `Timestamp('2017-01-31 00:00:00', offset='H ')`,这意味着我们不会捕获范围内最后一天的时间。加一:-) (2认同)

tho*_*olf 5

| 方法 时间| 相对|
| --------------------------------- | --------- | ----- ----- |
| OP的更新方法| 1.31毫秒| 17.6%|
| 生成日期范围,np.in1d | 1.75毫秒| 23.5%|
| 生成daterange,Series.isin | 1.90毫秒| 25.5%|
| 用虚拟系列重新采样| 4.37毫秒| 58.7%|
| OP的初始方法| 7.45毫秒| 100.0%|

更新2:生成日期范围, np.in1d

再次,@ IanS激发了更多的优化!可读性较差,但速度更快:

%%timeit -r 10
hourly_index4 = pd.date_range(daily_index.start_time.min(), 
                              daily_index.end_time.max() + pd.DateOffset(days=1), 
                              normalize=True, freq='H')
overlap = np.in1d(np.array(hourly_index4.values, dtype='datetime64[D]'),
                  np.array(daily_index.start_time.values, dtype='datetime64[D]'))
hourly_index4 = hourly_index4[overlap]

1000 loops, best of 10: 1.75 ms per loop
Run Code Online (Sandbox Code Playgroud)

在这里,通过将两个Series的值转换为相同的numpy datetime类型(hourly_index过程中充满),可以提高速度。传递.values给numpy加快了速度。

更新1:生成日期范围, Series.isin

受@IanS方法启发,比初始出价更快的方法:每小时为数据中整个日期范围生成daterange,并仅选择与数据中现有日期匹配的那些条目:

%%timeit
hourly_index3 = pd.date_range(daily_index.start_time.min(), 
                              # The following line should use 
                              # +pd.DateOffset(days=1) in place of +1
                              # but is left as is to show the option.
                              daily_index.end_time.max() + 1, 
                              normalize=True, freq='H')
hourly_index3 = hourly_index3[hourly_index3.floor('D').isin(daily_index.start_time)]

100 loops, best of 3: 1.9 ms per loop
Run Code Online (Sandbox Code Playgroud)

减少了大约75%的处理时间。

原始答案:使用虚拟系列重新采样

使用虚拟序列,可以避免循环。在我的计算机上,它节省了大约40%的运行时间。

以下是您的处理方法:

In [14]: %%timeit -o -r 10
   ....: hourly_index = pd.DatetimeIndex([]).union_many(   
   ....:     pd.date_range(day.to_timestamp('H','S'), day.to_timestamp('H','E'), freq='H')
   ....:     for day in daily_index
   ....: )
   ....: 
100 loops, best of 10: 7.45 ms per loop
Run Code Online (Sandbox Code Playgroud)

对于更快的方法:

In [13]: %%timeit -o -r 10
s = pd.Series(0, index=daily_index)
s = s.resample('H').last()
s = s[s.index.start_time.floor('D').isin(daily_index.start_time)]
hourly_index2 = s.index.start_time
   ....: 
100 loops, best of 10: 4.37 ms per loop
Run Code Online (Sandbox Code Playgroud)

请注意,我们并不真正在乎该系列的价值。在这里我只是默认为int

该表达式s.index.start_time.floor('D').isin(daily_index.start_time)为我们提供了布尔向量,该向量的s.index匹配天数为daily_index