lot*_*ine 3 transform c++11 point-cloud-library
我尝试用PCL执行ICP,
但 pcl::transformPointCloud不起作用.这是我的代码:
int
main ()
{
pcl::PointCloud<pcl::PointXYZI>::Ptr cloudIn (new pcl::PointCloud<pcl::PointXYZI>);
pcl::PointCloud<pcl::PointXYZI>::Ptr cloudOut (new pcl::PointCloud<pcl::PointXYZI>);
pcl::PointCloud<pcl::PointXYZI> finalCloud ;
pcl::PointCloud<pcl::PointXYZI> finalCloud1 ;
pcl::PointCloud<pcl::PointXYZI>::Ptr cloudOut_new (new pcl::PointCloud<pcl::PointXYZI>) ;
if(pcl::io::loadPCDFile ("/ICP_PCL/000.pcd", *cloudIn)==-1)
{
PCL_ERROR ("Couldn't read first file! \n");
return (-1);
}
if(pcl::io::loadPCDFile ("/ICP_PCL/001.pcd", *cloudOut)==-1)
{
PCL_ERROR ("Couldn't read second input file! \n");
return (-1);
}
pcl::IterativeClosestPoint<pcl::PointXYZI, pcl::PointXYZI> icp;
icp.setInputCloud(cloudOut);
icp.setInputTarget(cloudIn);
icp.setMaximumIterations (500);
icp.setTransformationEpsilon (1e-9);
icp.setMaxCorrespondenceDistance (0.05);
icp.setEuclideanFitnessEpsilon (1);
icp.setRANSACOutlierRejectionThreshold (1.5);
icp.align(finalCloud);
if (icp.hasConverged())
{
std::cout << "ICP converged." << std::endl
<< "The score is " << icp.getFitnessScore() << std::endl;
std::cout << "Transformation matrix:" << std::endl;
std::cout << icp.getFinalTransformation() << std::endl;
}
else std::cout << "ICP did not converge." << std::endl;
Eigen::Matrix4f transformationMatrix = icp.getFinalTransformation ();
std::cout<<"trans %n"<<transformationMatrix<<std::endl;
pcl::transformPointCloud( *cloudOut, *cloudOut_new, transformationMatrix);
pcl::io::savePCDFileASCII ("/ICP_PCL/IcpResult3.pcd", finalCloud);
finalCloud1=*cloudIn;
finalCloud1+=*cloudOut_new;
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer("3D Viewer"));
viewer->setBackgroundColor(0,0,0);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZI> single_color1 (cloudIn, 0, 0, 200);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZI> single_color2 (cloudOut_new, 200, 0, 0);
viewer->addPointCloud<pcl::PointXYZI> (cloudIn,single_color1, "sample_cloud_1");
viewer->addPointCloud<pcl::PointXYZI> (cloudOut_new, single_color2, "sample_cloud_2");
viewer->addCoordinateSystem(1.0);
while(!viewer->wasStopped())
{
viewer->spinOnce();
boost::this_thread::sleep (boost::posix_time::microseconds(100000));
}
return (0);
}
Run Code Online (Sandbox Code Playgroud)
它transformpointcloud不起作用,但保存的具有两个云的PCD文件看起来很好.有人可以告诉我发生了什么事吗?
问题在于算法参数的初始化不良.您为ICP算法选择以下参数:
icp.setInputCloud(cloudOut);
icp.setInputTarget(cloudIn);
icp.setMaximumIterations (500);
icp.setTransformationEpsilon (1e-9);
icp.setMaxCorrespondenceDistance (0.05);
icp.setEuclideanFitnessEpsilon (1);
icp.setRANSACOutlierRejectionThreshold (1.5);
Run Code Online (Sandbox Code Playgroud)
setMaximumIterations()如果初始对齐很差,则值应该更大;如果初始对齐已经非常好,则值应该更小.500迭代值很高,应该减小到一定范围内的值10 - 100(稍后在微调时总是可以增加).
值setRANSACOutlierRejectionThreshold()应该通常低于扫描仪的分辨率,例如,
值setMaxCorrespondenceDistance()应设置为约.价值的100倍setRANSACOutlierRejectionThreshold()(这取决于你的初始猜测有多好,也可以微调).
值setTransformationEpsilon()是您的收敛标准.如果当前和最后一次转换之间的差异总和小于此阈值,则注册成功并将终止.值(1e-9)似乎很合理,应该给出良好的初步结果.
该值setEuclideanFitnessEpsilon()是分歧阈值.在这里,您可以定义算法停止的ICP循环中两个连续步骤之间的差值.这意味着如果ICP在某个点发散,您可以设置欧氏距离误差障碍,这样它在剩余的迭代次数上就不会变得更糟.
有关如何设置参数的更多信息,请访问:
您遇到了指针问题,并且不需要某些行。使用此代码:
int main ()
{
pcl::PointCloud<pcl::PointXYZI>::Ptr cloudIn (new pcl::PointCloud<pcl::PointXYZI>);
pcl::PointCloud<pcl::PointXYZI>::Ptr cloudOut (new pcl::PointCloud<pcl::PointXYZI>);
pcl::PointCloud<pcl::PointXYZI>::Ptr finalCloud (new pcl::PointCloud<pcl::PointXYZI>);
pcl::PointCloud<pcl::PointXYZI>::Ptr cloudOut_new (new pcl::PointCloud<pcl::PointXYZI>) ;
if(pcl::io::loadPCDFile ("/ICP_PCL/000.pcd", *cloudIn)==-1)
{
PCL_ERROR ("Couldn't read first file! \n");
return (-1);
}
if(pcl::io::loadPCDFile ("/ICP_PCL/001.pcd", *cloudOut)==-1)
{
PCL_ERROR ("Couldn't read second input file! \n");
return (-1);
}
pcl::IterativeClosestPoint<pcl::PointXYZI, pcl::PointXYZI> icp;
icp.setInputCloud(cloudOut);
icp.setInputTarget(cloudIn);
icp.setMaximumIterations (500);
icp.setTransformationEpsilon (1e-9);
icp.setMaxCorrespondenceDistance (0.05);
icp.setEuclideanFitnessEpsilon (1);
icp.setRANSACOutlierRejectionThreshold (1.5);
icp.align(*cloudOut_new);
if (icp.hasConverged())
{
std::cout << "ICP converged." << std::endl
<< "The score is " << icp.getFitnessScore() << std::endl;
std::cout << "Transformation matrix:" << std::endl;
std::cout << icp.getFinalTransformation() << std::endl;
}
else std::cout << "ICP did not converge." << std::endl;
*finalCloud=*cloudIn;
*finalCloud+=*cloudOut_new;
pcl::io::savePCDFileASCII ("/ICP_PCL/IcpResult3.pcd", *finalCloud);
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer("3D Viewer"));
viewer->setBackgroundColor(0,0,0);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZI> single_color1 (cloudIn, 0, 0, 200);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZI> single_color2 (cloudOut_new, 200, 0, 0);
viewer->addPointCloud<pcl::PointXYZI> (cloudIn,single_color1, "sample_cloud_1");
viewer->addPointCloud<pcl::PointXYZI> (cloudOut_new, single_color2, "sample_cloud_2");
viewer->addCoordinateSystem(1.0);
while(!viewer->wasStopped())
{
viewer->spinOnce();
boost::this_thread::sleep (boost::posix_time::microseconds(100000));
}
return (0);
}
Run Code Online (Sandbox Code Playgroud)