mon*_*top 1 python csv arrays list matrix
从元组列表到第二行的数组成为将其打印到csv文件的标题.
这是我在城市原始列表之间的巴士旅行的数据集
L= [
("Seattle WA US","Seattle WA US","56"),
("Seattle WA US","North Bend WA US","1"),
("Seattle WA US","Candelaria 137 PR","2"),
("Seattle WA US","La Cienega NM US","2"),
("Seattle WA US","Thousand Palms CA US","1"),
("Oakhurst CA US","Thousand Palms CA US","10")
]
Run Code Online (Sandbox Code Playgroud)
当我打印到csv我得到使用:
ifile = open('test.csv', "rb")
reader = csv.reader(ifile)
ofile = open('ttest.csv', "wb")
writer = csv.writer(ofile, delimiter=' ', quotechar='"', quoting=csv.QUOTE_ALL)
writer.writerow(["departure","destination", "trips_count"])
for row in L:
writer.writerow(list(row))
Run Code Online (Sandbox Code Playgroud)
我明白了:
departure destination trips_count
Seattle WA US Seattle WA US 56
Seattle WA US North Bend WA US 1
Seattle WA US Candelaria 137 PR 2
Seattle WA US La Cienega NM US 2
Seattle WA US Thousand Palms CA US 1
Oakhurst CA US Thousand Palms CA US 10
Run Code Online (Sandbox Code Playgroud)
如何将其更改为此格式?
Seattle WA US North Bend WA US Candelaria 137 PR La Cienega NM US Thousand Palms CA US
Seattle WA US 56 1 2 2 1
Oakhurst CA US 0 0 0 0 10
Run Code Online (Sandbox Code Playgroud)
import pandas as pd
L= [
("Seattle WA US","Seattle WA US","56"),
("Seattle WA US","North Bend WA US","1"),
("Seattle WA US","Candelaria 137 PR","2"),
("Seattle WA US","La Cienega NM US","2"),
("Seattle WA US","Thousand Palms CA US","1"),
("Oakhurst CA US","Thousand Palms CA US","2")
]
df = pd.DataFrame(L, columns=['departure', 'destination', 'trips_count'])
df = df.pivot(index='departure', columns='destination').fillna(0)
df.to_csv('test.csv')
Run Code Online (Sandbox Code Playgroud)
输出:
In [17]: df = df.pivot(index='departure', columns='destination').fillna(0)
In [18]: df
Out[18]:
trips_count \
destination Candelaria 137 PR La Cienega NM US North Bend WA US
departure
Oakhurst CA US 0 0 0
Seattle WA US 2 2 1
destination Seattle WA US Thousand Palms CA US
departure
Oakhurst CA US 0 2
Seattle WA US 56 1
Run Code Online (Sandbox Code Playgroud)
有关pandas整形和数据透视表的更多信息
| 归档时间: |
|
| 查看次数: |
55 次 |
| 最近记录: |