SNo*_*Nos 3 objective-c pixels uiimage ios swift2
我需要计算中的所有黑色像素UIImage。我发现了一个可以工作的代码,但是它是用Objective-C编写的。我曾尝试将其快速转换,但出现很多错误,而且找不到修复它们的方法。
使用Swift执行此操作的最佳方法是什么?
目标C:
/**
* Structure to keep one pixel in RRRRRRRRGGGGGGGGBBBBBBBBAAAAAAAA format
*/
struct pixel {
unsigned char r, g, b, a;
};
/**
* Process the image and return the number of pure red pixels in it.
*/
- (NSUInteger) processImage: (UIImage*) image
{
NSUInteger numberOfRedPixels = 0;
// Allocate a buffer big enough to hold all the pixels
struct pixel* pixels = (struct pixel*) calloc(1, image.size.width * image.size.height * sizeof(struct pixel));
if (pixels != nil)
{
// Create a new bitmap
CGContextRef context = CGBitmapContextCreate(
(void*) pixels,
image.size.width,
image.size.height,
8,
image.size.width * 4,
CGImageGetColorSpace(image.CGImage),
kCGImageAlphaPremultipliedLast
);
if (context != NULL)
{
// Draw the image in the bitmap
CGContextDrawImage(context, CGRectMake(0.0f, 0.0f, image.size.width, image.size.height), image.CGImage);
// Now that we have the image drawn in our own buffer, we can loop over the pixels to
// process it. This simple case simply counts all pixels that have a pure red component.
// There are probably more efficient and interesting ways to do this. But the important
// part is that the pixels buffer can be read directly.
NSUInteger numberOfPixels = image.size.width * image.size.height;
while (numberOfPixels > 0) {
if (pixels->r == 255) {
numberOfRedPixels++;
}
pixels++;
numberOfPixels--;
}
CGContextRelease(context);
}
free(pixels);
}
return numberOfRedPixels;
}
Run Code Online (Sandbox Code Playgroud)
使用Accelerate vImageHistogramCalculation可以更快地获得图像中不同通道的直方图:
let img: CGImage = CIImage(image: image!)!.cgImage!
let imgProvider: CGDataProvider = img.dataProvider!
let imgBitmapData: CFData = imgProvider.data!
var imgBuffer = vImage_Buffer(data: UnsafeMutableRawPointer(mutating: CFDataGetBytePtr(imgBitmapData)), height: vImagePixelCount(img.height), width: vImagePixelCount(img.width), rowBytes: img.bytesPerRow)
let alpha = [UInt](repeating: 0, count: 256)
let red = [UInt](repeating: 0, count: 256)
let green = [UInt](repeating: 0, count: 256)
let blue = [UInt](repeating: 0, count: 256)
let alphaPtr = UnsafeMutablePointer<vImagePixelCount>(mutating: alpha) as UnsafeMutablePointer<vImagePixelCount>?
let redPtr = UnsafeMutablePointer<vImagePixelCount>(mutating: red) as UnsafeMutablePointer<vImagePixelCount>?
let greenPtr = UnsafeMutablePointer<vImagePixelCount>(mutating: green) as UnsafeMutablePointer<vImagePixelCount>?
let bluePtr = UnsafeMutablePointer<vImagePixelCount>(mutating: blue) as UnsafeMutablePointer<vImagePixelCount>?
let rgba = [redPtr, greenPtr, bluePtr, alphaPtr]
let histogram = UnsafeMutablePointer<UnsafeMutablePointer<vImagePixelCount>?>(mutating: rgba)
let error = vImageHistogramCalculation_ARGB8888(&imgBuffer, histogram, UInt32(kvImageNoFlags))
Run Code Online (Sandbox Code Playgroud)
该程序运行后,alpha,red,green,和blue现在直方图在图像的颜色。如果red,green和blue各自仅在第0个位置计数,而alpha仅在最后一个位置计数,则您的图像为黑色。
如果您甚至不想检查多个阵列,可以使用vImageMatrixMultiply合并不同的通道:
let readableMatrix: [[Int16]] = [
[3, 0, 0, 0]
[0, 1, 1, 1],
[0, 0, 0, 0],
[0, 0, 0, 0]
]
var matrix: [Int16] = [Int16](repeating: 0, count: 16)
for i in 0...3 {
for j in 0...3 {
matrix[(3 - j) * 4 + (3 - i)] = readableMatrix[i][j]
}
}
vImageMatrixMultiply_ARGB8888(&imgBuffer, &imgBuffer, matrix, 3, nil, nil, UInt32(kvImageNoFlags))
Run Code Online (Sandbox Code Playgroud)
如果您在直方图绘制之前imgBuffer将其粘贴,则将在适当位置进行修改以平均每个像素中的RGB,并将平均值写入B通道。这样,您只需检查blue直方图即可,而不是全部三个。
(顺便说一句,vImageMatrixMultiply我找到的最好的描述是在源代码中,例如https://github.com/phracker/MacOSX-SDKs/blob/2d31dd8bdd670293b59869335d9f1f80ca2075e0/MacOSX10.7.sdk/System/Library/Frameworks/Accelerate .framework / Versions / A / Frameworks / vImage.framework / Versions / A / Headers / Transform.h#L21)