pandas df.loc [z,x] = y如何提高速度?

Alt*_*ets 11 python optimization time-series pandas

我已经确定了一个pandas命令

timeseries.loc[z, x] = y
Run Code Online (Sandbox Code Playgroud)

负责迭代中花费的大部分时间.现在我正在寻找更好的方法来加速它.循环覆盖甚至不是50k元素(生产目标是〜250k或更多),但已经需要一个悲伤的20秒.

这是我的代码(忽略上半部分,它只是计时助手)

def populateTimeseriesTable(df, observable, timeseries):
    """
    Go through all rows of df and 
    put the observable into the timeseries 
    at correct row (symbol), column (tsMean).
    """

    print "len(df.index)=", len(df.index)  # show number of rows

    global bf, t
    bf = time.time()                       # set 'before' to now
    t = dict([(i,0) for i in range(5)])    # fill category timing with zeros

    def T(i):
        """
        timing helper: Add passed time to category 'i'. Then set 'before' to now.
        """
        global bf, t 
        t[i] = t[i] + (time.time()-bf)
        bf = time.time()        

    for i in df.index:             # this is the slow loop
        bf = time.time()

        sym = df["symbol"][i]
        T(0)

        tsMean = df["tsMean"][i]
        T(1)

        tsMean = tsFormatter(tsMean)
        T(2)

        o = df[observable][i]
        T(3)

        timeseries.loc[sym, tsMean] = o
        T(4)

    from pprint import pprint
    print "times needed (total = %.1f seconds) for each command:" % sum(t.values())
    pprint (t)

    return timeseries
Run Code Online (Sandbox Code Playgroud)

有(不重要,不慢)

def tsFormatter(ts):
    "as human readable string, only up to whole seconds"
    return time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime(ts))
Run Code Online (Sandbox Code Playgroud)

..

- > 待优化代码在for循环中.

(T和t只是辅助函数和dict,用于计时.)

我每走一步都有时间.绝大多数时间:

len(df.index)= 47160
times needed (total = 20.2 seconds) for each command:
{0: 1.102,
 1: 0.741,
 2: 0.243,
 3: 0.792,
 4: 17.371}
Run Code Online (Sandbox Code Playgroud)

在最后一步

timeseries.loc[sym, tsMean] = o
Run Code Online (Sandbox Code Playgroud)

我已经下载并安装了pypy - 但遗憾的是,这还不支持pandas.

任何想法如何加快填充2D阵列?

谢谢!


编辑:对不起,没有提到 - 'timeseries'也是一个数据帧:

timeseries = pd.DataFrame({"name": titles}, index=index)
Run Code Online (Sandbox Code Playgroud)

Max*_*axU 14

更新:从Pandas 0.20.1开始,.ix索引器已弃用,支持更严格的.iloc和.loc索引器.

================================================== ===================

@jezrael提供了一个有趣的比较,我决定使用更多的索引方法和10M行DF重复它(实际上在这种特殊情况下大小并不重要):

建立:

In [15]: df = pd.DataFrame(np.random.rand(10**7, 5), columns=list('abcde'))

In [16]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000000 entries, 0 to 9999999
Data columns (total 5 columns):
a    float64
b    float64
c    float64
d    float64
e    float64
dtypes: float64(5)
memory usage: 381.5 MB

In [17]: df.shape
Out[17]: (10000000, 5)
Run Code Online (Sandbox Code Playgroud)

定时:

In [37]: %timeit df.loc[random.randint(0, 10**7), 'b']
1000 loops, best of 3: 502 µs per loop

In [38]: %timeit df.iloc[random.randint(0, 10**7), 1]
1000 loops, best of 3: 394 µs per loop

In [39]: %timeit df.at[random.randint(0, 10**7), 'b']
10000 loops, best of 3: 66.8 µs per loop

In [41]: %timeit df.iat[random.randint(0, 10**7), 1]
10000 loops, best of 3: 32.9 µs per loop

In [42]: %timeit df.ix[random.randint(0, 10**7), 'b']
10000 loops, best of 3: 64.8 µs per loop

In [43]: %timeit df.ix[random.randint(0, 10**7), 1]
1000 loops, best of 3: 503 µs per loop
Run Code Online (Sandbox Code Playgroud)

结果作为条形图:

在此输入图像描述

定时数据为DF:

In [88]: r
Out[88]:
       method  timing
0         loc   502.0
1        iloc   394.0
2          at    66.8
3         iat    32.9
4    ix_label    64.8
5  ix_integer   503.0

In [89]: r.to_dict()
Out[89]:
{'method': {0: 'loc',
  1: 'iloc',
  2: 'at',
  3: 'iat',
  4: 'ix_label',
  5: 'ix_integer'},
 'timing': {0: 502.0,
  1: 394.0,
  2: 66.799999999999997,
  3: 32.899999999999999,
  4: 64.799999999999997,
  5: 503.0}}
Run Code Online (Sandbox Code Playgroud)

绘制

ax = sns.barplot(data=r, x='method', y='timing')
ax.tick_params(labelsize=16)
[ax.annotate(str(round(p.get_height(),2)), (p.get_x() + 0.2, p.get_height() + 5)) for p in ax.patches]
ax.set_xlabel('indexing method', size=20)
ax.set_ylabel('timing (microseconds)', size=20)
Run Code Online (Sandbox Code Playgroud)

  • 哇哇哇.非常感谢.这真的很有启发性.所以我对这种缓慢的怀疑确实是合理的.我选择了最舒适的解决方案,使用.loc - 但我用时间复杂度惩罚了7.5到15.3倍,与.at和.iat相比 - 非常感谢,这是非常有价值的信息! (2认同)

jez*_*ael 6

我一直认为at是最快的,但不是.ix是比较快的:

import pandas as pd

df = pd.DataFrame({'A':[1,2,3],
                   'B':[4,5,6],
                   'C':[7,8,9],
                   'D':[1,3,5],
                   'E':[5,3,6],
                   'F':[7,4,3]})

print (df)
   A  B  C  D  E  F
0  1  4  7  1  5  7
1  2  5  8  3  3  4
2  3  6  9  5  6  3

print (df.at[2, 'B'])
6
print (df.ix[2, 'B'])
6
print (df.loc[2, 'B'])
6

In [77]: %timeit df.at[2, 'B']
10000 loops, best of 3: 44.6 µs per loop

In [78]: %timeit df.ix[2, 'B']
10000 loops, best of 3: 40.7 µs per loop

In [79]: %timeit df.loc[2, 'B']
1000 loops, best of 3: 681 µs per loop
Run Code Online (Sandbox Code Playgroud)

编辑:

我尝试和差异导致功能:MaxU dfrandom.randint

df = pd.DataFrame(np.random.rand(10**7, 5), columns=list('ABCDE'))


In [4]: %timeit (df.ix[2, 'B'])
The slowest run took 25.80 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 20.7 µs per loop

In [5]: %timeit (df.ix[random.randint(0, 10**7), 'B'])
The slowest run took 9.42 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 28 µs per loop
Run Code Online (Sandbox Code Playgroud)

  • 因为你的答案都同样好......我已经抛出了一千个硬币:总和([random.random()for _ in range(1000)])/ 1000,结果是0.4972785257694664 - 所以MaxU赢了,随机选择:-)美好的一天给你! (6认同)