如何在matplotlib中绘制"双向宽度线"

Mac*_*cer 6 python data-visualization matplotlib pyqtgraph

如何使用matplotlib或pyqtgraph绘制如下图: 两个dirrections宽度线

线AB是双向街道,绿色部分表示从A点到B点的方向,红色部分表示B到A,每个部分的宽度表示交通量.宽度以磅为单位测量,不会在不同的缩放级别或dpi设置下更改.

这只是一个例子,事实上我有很多街道.这种情节在许多交通软件中很常见.我尝试使用matplotlib的patheffect,但结果令人沮丧:

from matplotlib import pyplot as plt
import matplotlib.patheffects as path_effects

x=[0,1,2,3]
y=[1,0,0,-1]
ab_width=20
ba_width=30

fig, axes= plt.subplots(1,1)
center_line, = axes.plot(x,y,color='k',linewidth=2)

center_line.set_path_effects(
[path_effects.SimpleLineShadow(offset=(0, -ab_width/2),shadow_color='g', alpha=1, linewidth=ab_width),
path_effects.SimpleLineShadow(offset=(0, ba_width/2), shadow_color='r', alpha=1, linewidth=ba_width),
path_effects.SimpleLineShadow(offset=(0, -ab_width), shadow_color='k', alpha=1, linewidth=2),
path_effects.SimpleLineShadow(offset=(0, ba_width), shadow_color='k', alpha=1, linewidth=2),
path_effects.Normal()])

axes.set_xlim(-1,4)
axes.set_ylim(-1.5,1.5)
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

我想到的一个想法是将线的每个部分作为独立线,并在更改缩放级别时重新计算它的位置,但它太复杂和缓慢.

如果有任何简单的方法使用matplotlib或pyqtgraph绘制我想要的东西?任何建议将不胜感激!

rll*_*rll 5

如果您可以拥有每条独立的线路,则可以使用该fill_between功能轻松完成。

from matplotlib import pyplot as plt
import numpy as np

x=np.array([0,1,2,3])
y=np.array([1,0,0,-1])

y1width=-1
y2width=3
y1 = y + y1width
y2 = y + y2width

fig = plt.figure()
ax = fig.add_subplot(111)

plt.plot(x,y, 'k', x,y1, 'k',x,y2, 'k',linewidth=2)
ax.fill_between(x, y1, y, color='g')
ax.fill_between(x, y2, y, color='r')

plt.xlim(-1,4)
plt.ylim(-3,6)
plt.show()
Run Code Online (Sandbox Code Playgroud)

在这里,我将中心线视为参考(因此为负y1width),但可以采用不同的方式。结果是:

<code>fill_between</code> 结果。

如果线条“复杂”,最终在某个点相交,则interpolate=True必须使用关键字参数正确填充交叉区域。另一个可能对您的用例有用的有趣论点是where, 调节区域,例如,where=y1 < 0。有关更多信息,您可以查看文档


reg*_*irk 3

解决问题的一种方法是使用填充多边形、一些线性代数和一些微积分。x主要思想是沿着您的和坐标以及沿着移动坐标绘制多边形y以闭合并填充多边形。

这些是我的结果:沿路径填充多边形

这是代码:

from __future__ import division
import numpy
from matplotlib import pyplot, patches


def road(x, y, w, scale=0.005, **kwargs):
    # Makes sure input coordinates are arrays.
    x, y = numpy.asarray(x, dtype=float), numpy.asarray(y, dtype=float)
    # Calculate derivative.
    dx = x[2:] - x[:-2]
    dy = y[2:] - y[:-2]
    dy_dx = numpy.concatenate([
        [(y[1] - y[0]) / (x[1] - x[0])],
        dy / dx,
        [(y[-1] - y[-2]) / (x[-1] - x[-2])]
    ])
    # Offsets the input coordinates according to the local derivative.
    offset = -dy_dx + 1j
    offset =  w * scale * offset / abs(offset)
    y_offset = y + w * scale
    #
    AB = zip(
        numpy.concatenate([x + offset.real, x[::-1]]),
        numpy.concatenate([y + offset.imag, y[::-1]]),
    )
    p = patches.Polygon(AB, **kwargs)

    # Returns polygon.
    return p


if __name__ == '__main__':
    # Some plot initializations
    pyplot.close('all')
    pyplot.ion()

    # This is the list of coordinates of each point
    x = [0, 1, 2, 3, 4]
    y = [1, 0, 0, -1, 0]

    # Creates figure and axes.
    fig, ax = pyplot.subplots(1,1)
    ax.axis('equal')
    center_line, = ax.plot(x, y, color='k', linewidth=2)

    AB = road(x, y, 20, color='g')
    BA = road(x, y, -30, color='r')
    ax.add_patch(AB)
    ax.add_patch(BA)
Run Code Online (Sandbox Code Playgroud)

计算如何偏移每个数据点的第一步是计算离散导数dy / dx。我喜欢在 Python 中使用复杂的符号来处理向量,即A = 1 - 1j. 这使得一些数学运算变得更容易。

下一步是记住导数给出了曲线的切线,并且从线性代数中,切线的法线是n=-dy_dx + 1j,使用复数表示法。

确定偏移坐标的最后一步是确保法线向量具有统一的大小n_norm = n / abs(n)并乘以所需的多边形宽度。

现在我们已经有了多边形中点的所有坐标,剩下的就非常简单了。使用patches.Polygon并将它们添加到绘图中。

此代码还允许您定义是否希望补丁位于路线之上或之下。只需给出宽度的正值或负值即可。如果要根据缩放级别和/或分辨率更改多边形的宽度,请调整参数scale。它还使您可以自由地向补丁添加其他参数,例如填充图案、透明度等。