ant*_*ell 32 scala dataframe apache-spark apache-spark-sql orc
我想知道是否有某种方法可以为多列上的spark数据帧指定自定义聚合函数.
我有一个类似这样的表(名称,项目,价格):
john | tomato | 1.99
john | carrot | 0.45
bill | apple | 0.99
john | banana | 1.29
bill | taco | 2.59
Run Code Online (Sandbox Code Playgroud)
至:
我想将每个人的项目和成本汇总到这样的列表中:
john | (tomato, 1.99), (carrot, 0.45), (banana, 1.29)
bill | (apple, 0.99), (taco, 2.59)
Run Code Online (Sandbox Code Playgroud)
这在数据帧中是否可行?我最近了解到collect_list
它,但它似乎只适用于一个专栏.
小智 65
struct
在收集列表之前,请考虑使用该函数将列分组在一起:
import org.apache.spark.sql.functions.{collect_list, struct}
import sqlContext.implicits._
val df = Seq(
("john", "tomato", 1.99),
("john", "carrot", 0.45),
("bill", "apple", 0.99),
("john", "banana", 1.29),
("bill", "taco", 2.59)
).toDF("name", "food", "price")
df.groupBy($"name")
.agg(collect_list(struct($"food", $"price")).as("foods"))
.show(false)
Run Code Online (Sandbox Code Playgroud)
输出:
+----+---------------------------------------------+
|name|foods |
+----+---------------------------------------------+
|john|[[tomato,1.99], [carrot,0.45], [banana,1.29]]|
|bill|[[apple,0.99], [taco,2.59]] |
+----+---------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
Dav*_*fin 33
最简单的方法来做到这一点的DataFrame
,是先收集两个列表,然后使用UDF
到zip
两个列表在一起.就像是:
import org.apache.spark.sql.functions.{collect_list, udf}
import sqlContext.implicits._
val zipper = udf[Seq[(String, Double)], Seq[String], Seq[Double]](_.zip(_))
val df = Seq(
("john", "tomato", 1.99),
("john", "carrot", 0.45),
("bill", "apple", 0.99),
("john", "banana", 1.29),
("bill", "taco", 2.59)
).toDF("name", "food", "price")
val df2 = df.groupBy("name").agg(
collect_list(col("food")) as "food",
collect_list(col("price")) as "price"
).withColumn("food", zipper(col("food"), col("price"))).drop("price")
df2.show(false)
# +----+---------------------------------------------+
# |name|food |
# +----+---------------------------------------------+
# |john|[[tomato,1.99], [carrot,0.45], [banana,1.29]]|
# |bill|[[apple,0.99], [taco,2.59]] |
# +----+---------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
小智 6
就您的观点而言,collect_list似乎仅适用于一列:要使collect_list适用于多列,您必须将所需的列包装在一个结构中。例如:
val aggregatedData = df.groupBy("name").agg(collect_list(struct("item", "price")) as("food"))
aggregatedData.show
+----+------------------------------------------------+
|name|foods |
+----+------------------------------------------------+
|john|[[tomato, 1.99], [carrot, 0.45], [banana, 1.29]]|
|bill|[[apple, 0.99], [taco, 2.59]] |
+----+------------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
小智 5
也许比zip
函数更好的方法(因为UDF和UDAF对性能不利)是将两列包装到Struct
。
这可能也可以工作:
df.select('name, struct('food, 'price).as("tuple"))
.groupBy('name)
.agg(collect_list('tuple).as("tuples"))
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
21237 次 |
最近记录: |