润滑 mdy 功能

Viv*_*mar 2 r lubridate

我正在尝试转换以下内容,但在其中一个日期 [1] 上没有成功。“4/2/10”变成“0010-04-02”。

有没有办法纠正这个问题?

谢谢,维维克

data <- data.frame(initialDiagnose = c("4/2/10","14.01.2009", "9/22/2005", 
        "4/21/2010", "28.01.2010", "09.01.2009", "3/28/2005", 
        "04.01.2005", "04.01.2005", "Created on 9/17/2010", "03 01 2010"))

mdy <- mdy(data$initialDiagnose) 
dmy <- dmy(data$initialDiagnose) 
mdy[is.na(mdy)] <- dmy[is.na(mdy)] # some dates are ambiguous, here we give 
data$initialDiagnose <- mdy        # mdy precedence over dmy
data

   initialDiagnose
1       0010-04-02
2       2009-01-14
3       2005-09-22
4       2010-04-21
5       2010-01-28
6       2009-09-01
7       2005-03-28
8       2005-04-01
9       2005-04-01
10      2010-09-17
11      2010-03-01
Run Code Online (Sandbox Code Playgroud)

ial*_*alm 5

我认为发生这种情况是因为该mdy()函数更喜欢将年份与%Y(实际年份)匹配(年份的%y2 位数缩写,默认为 19XX 或 20XX)。

不过,有一个解决方法。我查看了lubridate::parse_date_time( ?parse_date_time) 的帮助文件,在帮助文件的底部附近,有一个示例用于添加一个参数,该参数更喜欢与%y格式匹配而%Y不是年份格式。帮助文件中的相关代码位:

## ** how to use `select_formats` argument **
## By default %Y has precedence:
parse_date_time(c("27-09-13", "27-09-2013"), "dmy")
## [1] "13-09-27 UTC"   "2013-09-27 UTC"

## to give priority to %y format, define your own select_format function:

my_select <-   function(trained){
   n_fmts <- nchar(gsub("[^%]", "", names(trained))) + grepl("%y", names(trained))*1.5
   names(trained[ which.max(n_fmts) ])
}

parse_date_time(c("27-09-13", "27-09-2013"), "dmy", select_formats = my_select)
## '[1] "2013-09-27 UTC" "2013-09-27 UTC"
Run Code Online (Sandbox Code Playgroud)

因此,对于您的示例,您可以修改此代码并将该mdy <- mdy(data$initialDiagnose)行替换为:

# Define a select function that prefers %y over %Y. This is copied 
# directly from the help files
my_select <-   function(trained){
  n_fmts <- nchar(gsub("[^%]", "", names(trained))) + grepl("%y", names(trained))*1.5
  names(trained[ which.max(n_fmts) ])
}

# Parse as mdy dates
mdy <- parse_date_time(data$initialDiagnose, "mdy", select_formats = my_select)
# [1] "2010-04-02 UTC" NA               "2005-09-22 UTC" "2010-04-21 UTC" NA              
# [6] "2009-09-01 UTC" "2005-03-28 UTC" "2005-04-01 UTC" "2005-04-01 UTC" "2010-09-17 UTC"
#[11] "2010-03-01 UTC"
Run Code Online (Sandbox Code Playgroud)

并运行您的问题中剩余的代码行,结果为我提供了此数据框:

   initialDiagnose
1       2010-04-02
2       2009-01-14
3       2005-09-22
4       2010-04-21
5       2010-01-28
6       2009-09-01
7       2005-03-28
8       2005-04-01
9       2005-04-01
10      2010-09-17
11      2010-03-01
Run Code Online (Sandbox Code Playgroud)