Mik*_*cre 3 python multi-index dataframe pandas
我正在尝试使用看起来像这样的pandas multiindex数据框:
end ref|alt
chrom start
chr1 3000714 3000715 T|G
3001065 3001066 G|T
3001110 3001111 G|C
3001131 3001132 G|A
Run Code Online (Sandbox Code Playgroud)
我希望能够这样做:
df.loc[('chr1', slice(3000714, 3001110))]
Run Code Online (Sandbox Code Playgroud)
失败并出现以下错误:
不能用这些索引器[1204741]进行切片索引
df.index.levels[1].dtype返回dtype('int64'),所以应该使用整数切片吗?
此外,任何关于如何有效地执行此操作的评论都是有价值的,因为数据框有1200万行,我需要使用这种切片查询查询约7000万次.
我认为你需要添加,:到最后 - 这意味着你需要切片行,但需要所有列:
print (df.loc[('chr1', slice(3000714, 3001110)),:])
end ref|alt
chrom start
chr1 3000714 3000715 T|G
3001065 3001066 G|T
3001110 3001111 G|C
Run Code Online (Sandbox Code Playgroud)
另一个解决方案是添加axis=0到loc:
print (df.loc(axis=0)[('chr1', slice(3000714, 3001110))])
end ref|alt
chrom start
chr1 3000714 3000715 T|G
3001065 3001066 G|T
3001110 3001111 G|C
Run Code Online (Sandbox Code Playgroud)
但如果只需要3000714和3001110:
print (df.loc[('chr1', [3000714, 3001110]),:])
end ref|alt
chrom start
chr1 3000714 3000715 T|G
3001110 3001111 G|C
idx = pd.IndexSlice
print (df.loc[idx['chr1', [3000714, 3001110]],:])
end ref|alt
chrom start
chr1 3000714 3000715 T|G
3001110 3001111 G|C
Run Code Online (Sandbox Code Playgroud)
时间:
In [21]: %timeit (df.loc[('chr1', slice(3000714, 3001110)),:])
1000 loops, best of 3: 757 µs per loop
In [22]: %timeit (df.loc(axis=0)[('chr1', slice(3000714, 3001110))])
1000 loops, best of 3: 743 µs per loop
In [23]: %timeit (df.loc[('chr1', [3000714, 3001110]),:])
1000 loops, best of 3: 824 µs per loop
In [24]: %timeit (df.loc[pd.IndexSlice['chr1', [3000714, 3001110]],:])
The slowest run took 5.35 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 826 µs per loop
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3941 次 |
| 最近记录: |