Chi*_*iel 10 python arrays numpy mask
我有一个三维数组,我想使用一个二维数组进行掩码,该数组的尺寸与三维数组中最右边的两个相同.有没有办法在不编写以下循环的情况下执行此操作?
import numpy as np
nx = 2
nt = 4
field3d = np.random.rand(nt, nx, nx)
field2d = np.random.rand(nx, nx)
field3d_mask = np.zeros(field3d.shape, dtype=bool)
for t in range(nt):
    field3d_mask[t,:,:] = field2d > 0.3
field3d = np.ma.array(field3d, mask=field3d_mask)
print field2d
print field3d
小智 12
有numpy.broadcast_to(Numpy 1.10.0中的新内容):
field3d_mask = np.broadcast_to(field2d > 0.3, field3d.shape)
如果没有循环,您可以将其写为:
field3d_mask[:,:,:] = field2d[np.newaxis,:,:] > 0.3
例如:
field3d_mask_1 = np.zeros(field3d.shape, dtype=bool)
field3d_mask_2 = np.zeros(field3d.shape, dtype=bool)
for t in range(nt):
    field3d_mask_1[t,:,:] = field2d > 0.3
field3d_mask_2[:,:,:] = field2d[np.newaxis,:,:] > 0.3
print((field3d_mask_1 == field3d_mask_2).all())
得到:
真正
| 归档时间: | 
 | 
| 查看次数: | 6084 次 | 
| 最近记录: |