我有一些相当大的批量大小,我想采取多个渐变步骤.虽然我可以使用python for循环轻松完成此操作,但我想可能有一个更有效的方法,不涉及在每次迭代时将数据传输到gpu.我已经尝试将列车操作多次放入获取列表中,但我不确定它实际上是多次运行(运行时完全相同).
如果你有可变大小的批处理,那么变量不适合保存它,你可以run
使用持久的张量在调用之间保留这些数据.这是一个玩具的例子
t = tf.int32
params = tf.Variable(tf.ones_initializer((), dtype=dt))
data_batches = [[1], [2, 3], [4, 5, 6]]
# op that uploads data to TF and saves it as a persistent Tensor
data_saver_placeholder = tf.placeholder(dt)
tensor_handle_op = tf.get_session_handle(data_saver_placeholder)
data_placeholder, data = tf.get_session_tensor(dt)
train_op = tf.assign_add(params, tf.reduce_prod(data))
init_op = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init_op)
for batch in data_batches:
# upload tensor to TF runtime and save its handle
tensor_handle = sess.run(tensor_handle_op, feed_dict={data_saver_placeholder: batch})
# run train op several times reusing same data
for i in range(3):
sess.run(train_op, feed_dict={data_placeholder: tensor_handle.handle})
assert sess.run(params) == 382
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
5266 次 |
最近记录: |