我使用LMDB的方式有误吗?它表示插入0次后达到环境mapsize限制

9th*_*ion 2 python database machine-learning lmdb

我正在尝试为我的Caffe机器学习项目创建LMDB数据库。但是,LMDB在第一次尝试插入数据点时抛出错误,并指出环境mapsize已满。

这是尝试填充数据库的代码:

import numpy as np
from PIL import Image
import os
import lmdb
import random
# my data structure for holding image/label pairs
from serialization import DataPoint

class LoadImages(object):
    def __init__(self, image_data_path):
        self.image_data_path = image_data_path
        self.dirlist = os.listdir(image_data_path)

        # find the number of images that are to be read from disk
        # in this case there are 370 images.
        num = len(self.dirlist)

        # shuffle the list of image files so that they are read in a random order
        random.shuffle(self.dirlist)

        map_size = num*10

        j=0

        # load images from disk
        for image_filename in os.listdir(image_data_path):
            # check that every image belongs to either category _D_ or _P_
            assert (image_filename[:3] == '_D_' or image_filename[:3] == '_P_'), "ERROR: unknown category"

            # set up the LMDB datbase object
            env = lmdb.open('image_lmdb', map_size=map_size)
            with env.begin(write=True) as txn:

                # iterate over (shuffled) list of image files
                for image_filename in self.dirlist:
                    print "Loading " + str(j) + "th image from disk - percentage complete:  " + str((float(j)/num) * 100) + " %"

                    # open the image
                    with open(str(image_data_path + "/" + image_filename), 'rb') as f:
                        image = Image.open(f)
                        npimage = np.asarray(image, dtype=np.float64)

                    # discard alpha channel, if necessary
                    if npimage.shape[2] == 4:
                        npimage = npimage[:,:,:3]
                        print image_filename + " had its alpha channel removed."

                    # get category
                    if image_filename[:3] == '_D_':
                        category = 0
                    elif image_filename[:3] == '_P_':
                        category = 1

                    # wrap image data and label into a serializable data structure
                    datapoint = DataPoint(npimage, category)
                    serialized_datapoint = datapoint.serialize()

                    # a database key
                    str_id = '{:08}'.format(j)

                    # put the data point in the LMDB
                    txn.put(str_id.encode('ascii'), serialized_datapoint)

                j+=1
Run Code Online (Sandbox Code Playgroud)

我还制作了一些数据结构来保存图像和标签并对其进行序列化,该结构在上面使用过:

import numpy as np

class DataPoint(object):
    def __init__(self, image=None, label=None, dtype=np.float64):
        self.image = image
        if self.image is not None:
            self.image = self.image.astype(dtype)
        self.label = label

    def serialize(self):
        image_string = self.image.tobytes()
        label_string = chr(self.label)
        datum_string = label_string + image_string
        return datum_string

    def deserialize(self, string):
        image_string = string[1:]
        label_string = string[:1]
        image = np.fromstring(image_string, dtype=np.float64)
        label = ord(label_string)
        return DataPoint(image, label)
Run Code Online (Sandbox Code Playgroud)

这是错误:

/usr/bin/python2.7 /home/hal9000/PycharmProjects/Caffe_Experiments_0.6/gather_images.py
Loading 0th image from disk - percentage complete:  0.0 %
Traceback (most recent call last):
  File "/home/hal9000/PycharmProjects/Caffe_Experiments_0.6/gather_images.py", line 69, in <module>
    g = LoadImages(path)
  File "/home/hal9000/PycharmProjects/Caffe_Experiments_0.6/gather_images.py", line 62, in __init__
    txn.put(str_id.encode('ascii'), serialized_datapoint)
lmdb.MapFullError: mdb_put: MDB_MAP_FULL: Environment mapsize limit reached
Run Code Online (Sandbox Code Playgroud)

Oph*_*tan 5

映射大小是整个数据库(包括元数据)的最大大小-看来您使用了预期的记录数。

你增加这个数字


Foo*_*167 5

Do you have only 10 bytes per image?

And there is other info except of images in the database. So reserve more space for your LMDB database. For example, this command reserves 1GB (10**9 bytes) for LMDB on your disk drive:

env = lmdb.open('image_lmdb', map_size=int(1e9))
Run Code Online (Sandbox Code Playgroud)