les*_*enk 7 python performance numpy
我有一个大小不等的数组(4,X,Y),其中第一个维度代表(R,G,B,A)四联体.我的目标是将每个X*YRGBA四元组转换为X*Y浮点值,给定一个匹配它们的字典.
我目前的代码如下:
codeTable = {
(255, 255, 255, 127): 5.5,
(128, 128, 128, 255): 6.5,
(0 , 0 , 0 , 0 ): 7.5,
}
for i in range(0, rows):
for j in range(0, cols):
new_data[i,j] = codeTable.get(tuple(data[:,i,j]), -9999)
Run Code Online (Sandbox Code Playgroud)
哪个data是大小的numpy数组(4, rows, cols),并且new_data大小(rows, cols).
代码工作正常,但需要很长时间.我该如何优化这段代码?
这是一个完整的例子:
import numpy
codeTable = {
(253, 254, 255, 127): 5.5,
(128, 129, 130, 255): 6.5,
(0 , 0 , 0 , 0 ): 7.5,
}
# test data
rows = 2
cols = 2
data = numpy.array([
[[253, 0], [128, 0], [128, 0]],
[[254, 0], [129, 144], [129, 0]],
[[255, 0], [130, 243], [130, 5]],
[[127, 0], [255, 120], [255, 5]],
])
new_data = numpy.zeros((rows,cols), numpy.float32)
for i in range(0, rows):
for j in range(0, cols):
new_data[i,j] = codeTable.get(tuple(data[:,i,j]), -9999)
# expected result for `new_data`:
# array([[ 5.50000000e+00, 7.50000000e+00],
# [ 6.50000000e+00, -9.99900000e+03],
# [ 6.50000000e+00, -9.99900000e+03], dtype=float32)
Run Code Online (Sandbox Code Playgroud)
这是一种返回预期结果的方法,但由于数据量如此小,很难知道这对您来说是否会更快。然而,由于我避免了双重 for 循环,我想您会看到相当不错的加速。
import numpy
import pandas as pd
codeTable = {
(253, 254, 255, 127): 5.5,
(128, 129, 130, 255): 6.5,
(0 , 0 , 0 , 0 ): 7.5,
}
# test data
rows = 3
cols = 2
data = numpy.array([
[[253, 0], [128, 0], [128, 0]],
[[254, 0], [129, 144], [129, 0]],
[[255, 0], [130, 243], [130, 5]],
[[127, 0], [255, 120], [255, 5]],
])
new_data = numpy.zeros((rows,cols), numpy.float32)
for i in range(0, rows):
for j in range(0, cols):
new_data[i,j] = codeTable.get(tuple(data[:,i,j]), -9999)
def create_output(data):
# Reshape your two data sources to be a bit more sane
reshaped_data = data.reshape((4, -1))
df = pd.DataFrame(reshaped_data).T
reshaped_codeTable = []
for key in codeTable.keys():
reshaped = list(key) + [codeTable[key]]
reshaped_codeTable.append(reshaped)
ct = pd.DataFrame(reshaped_codeTable)
# Merge on the data, replace missing merges with -9999
result = df.merge(ct, how='left')
newest_data = result[4].fillna(-9999)
# Reshape
output = newest_data.reshape(rows, cols)
return output
output = create_output(data)
print(output)
# array([[ 5.50000000e+00, 7.50000000e+00],
# [ 6.50000000e+00, -9.99900000e+03],
# [ 6.50000000e+00, -9.99900000e+03])
print(numpy.array_equal(new_data, output))
# True
Run Code Online (Sandbox Code Playgroud)