Som*_*ame 7 algorithm pseudocode dynamic-programming
我想知道如何使用自上而下动态规划找到数组的 LIS。是否存在一种这样的解决方案?你能给我提供使用自顶向下动态规划查找数组 LIS 的伪代码吗?我无法在互联网上找到一个。他们都使用自下而上。
小智 6
在java中解决LIS长度的递归方法如下 -
public int LIS(int[] arr) {
return LISLength(arr, Integer.MIN_VALUE, 0);
}
public int LISLength(int[] arr, int prev, int current) {
if (current == arr.length) {
return 0;
}
int include = 0;
if (arr[current] > prev) {
include = 1 + LISLength(arr, arr[current], current + 1);
}
int exclude = LISLength(arr, prev, current + 1);
return Math.max(include, exclude);
}
Run Code Online (Sandbox Code Playgroud)
但它可以使用 O(2^n) 时间复杂度,所以我们需要使用记忆技术来降低复杂度,下面的方法 -
public int LIS(int[] arr) {
int memoTable[][] = new int[arr.length + 1][arr.length];
for (int[] l : memoTable) {
Arrays.fill(l, -1);
}
return LISLength(arr, -1, 0, memoTable);
}
public int LISLength(int[] arr, int prev, int current, int[][] memoTable) {
if (current == arr.length) {
return 0;
}
if (memoTable[prev + 1][current] >= 0) {
return memoTable[prev + 1][current];
}
int include = 0;
if (prev < 0 || arr[current] > arr[prev]) {
include = 1 + LISLength(arr, current, current + 1, memoTable);
}
int exclude = LISLength(arr, prev, current + 1, memoTable);
memoTable[prev + 1][current] = Math.max(include, exclude);
return memoTable[prev + 1][current];
}
Run Code Online (Sandbox Code Playgroud)
所以 O(n^2) 将通过记忆技术优化时间复杂度。
当然。定义:
F(n) = 序列 1..n 的最长递增子序列,并且该序列必须以元素n结尾
然后我们得到递归函数(自上而下):
F(n) = max(len(F(i)) + 1) 其中 0 <= i < n 且 array[i] < array[n]
所以答案是:
F(1..n) 的最长递增子序列
通过记忆化,我们得到了这段代码(这是Python,它比伪代码更好):
d = {}
array = [1, 5, 2, 3, 4, 7, 2]
def lis(n):
if d.get(n) is not None:
return d[n]
length = 1
ret = [array[n]]
for i in range(n):
if array[n] > array[i] and len(lis(i)) + 1 > length:
length = len(lis(i)) + 1
ret = lis(i) + [array[n]]
d[n] = ret
return ret
def get_ans():
max_length = 0
ans = []
for i in range(len(array)):
if max_length < len(lis(i)):
ans = lis(i)
max_length = len(lis(i))
return ans
print get_ans() # [1, 2, 3, 4, 7]
Run Code Online (Sandbox Code Playgroud)