wol*_*oor 5 r matrix dataframe
假设我有两个绑定在一起的方形矩阵(实际上更多):
mat = matrix(1:18,nrow=3,ncol=6)
mat
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 4 7 10 13 16
[2,] 2 5 8 11 14 17
[3,] 3 6 9 12 15 18
Run Code Online (Sandbox Code Playgroud)
我想采用每个(3x3)矩阵的转置并保持它们并排粘合,因此结果是:
mat2
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 3 10 11 12
[2,] 4 5 6 13 14 15
[3,] 7 8 9 16 17 18
Run Code Online (Sandbox Code Playgroud)
我不想手动执行此操作,因为它是多个矩阵cbound在一起,而不仅仅是2.
我想要一个避免循环或应用的解决方案(这只是一个循环的包装器).我需要有效的解决方案,因为这将需要运行数万次.
一种方法是使用矩阵索引
matrix(t(m), nrow=nrow(m))[, c(matrix(1:ncol(m), nrow(m), byrow=T)) ]
Run Code Online (Sandbox Code Playgroud)
这将采用转置矩阵并按所需顺序重新排列列.
m <- matrix(1:18,nrow=3,ncol=6)
matrix(t(m), nrow=nrow(m))
# [,1] [,2] [,3] [,4] [,5] [,6]
# [1,] 1 10 2 11 3 12
# [2,] 4 13 5 14 6 15
# [3,] 7 16 8 17 9 18
Run Code Online (Sandbox Code Playgroud)
所以我们想要第1列,第3列和第5列,以及第2列,第4列和第6列.一种方法是用这些索引
c(matrix(1:ncol(m), nrow(m), byrow=T))
#[1] 1 3 5 2 4 6
Run Code Online (Sandbox Code Playgroud)
作为替代方案,您可以使用
idx <- rep(1:ncol(m), each=nrow(m), length=ncol(m)) ;
do.call(cbind, split.data.frame(t(m), idx))
Run Code Online (Sandbox Code Playgroud)
尝试新的矩阵
(m <- matrix(1:50, nrow=5))
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
# [1,] 1 6 11 16 21 26 31 36 41 46
# [2,] 2 7 12 17 22 27 32 37 42 47
# [3,] 3 8 13 18 23 28 33 38 43 48
# [4,] 4 9 14 19 24 29 34 39 44 49
# [5,] 5 10 15 20 25 30 35 40 45 50
matrix(t(m), nrow=nrow(m))[, c(matrix(1:ncol(m), nrow(m), byrow=T)) ]
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
# [1,] 1 2 3 4 5 26 27 28 29 30
# [2,] 6 7 8 9 10 31 32 33 34 35
# [3,] 11 12 13 14 15 36 37 38 39 40
# [4,] 16 17 18 19 20 41 42 43 44 45
# [5,] 21 22 23 24 25 46 47 48 49 50
Run Code Online (Sandbox Code Playgroud)