pep*_*epe 4 python machine-learning neural-network conv-neural-network tensorflow
根据ConvNet的Tensorflow教程,有些观点对我来说不是很明显:
本教程的函数流程似乎如下:
cifar_10_train.py
def train
"""Train CIFAR-10 for a number of steps."""
with tf.Graph().as_default():
[...]
# Get images and labels for CIFAR-10.
images, labels = cifar10.distorted_inputs()
[...]
Run Code Online (Sandbox Code Playgroud)
cifar10.py
def distorted_inputs():
"""Construct distorted input for CIFAR training using the Reader ops.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
Raises:
ValueError: If no data_dir
"""
if not FLAGS.data_dir:
raise ValueError('Please supply a data_dir')
data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
return cifar10_input.distorted_inputs(data_dir=data_dir,
batch_size=FLAGS.batch_size)
Run Code Online (Sandbox Code Playgroud)
最后是cifar10_input.py
def distorted_inputs(data_dir, batch_size):
"""Construct distorted input for CIFAR training using the Reader ops.
Args:
data_dir: Path to the CIFAR-10 data directory.
batch_size: Number of images per batch.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in xrange(1, 6)]
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f)
# Create a queue that produces the filenames to read.
filename_queue = tf.train.string_input_producer(filenames)
# Read examples from files in the filename queue.
read_input = read_cifar10(filename_queue)
reshaped_image = tf.cast(read_input.uint8image, tf.float32)
height = IMAGE_SIZE
width = IMAGE_SIZE
# Image processing for training the network. Note the many random
# distortions applied to the image.
# Randomly crop a [height, width] section of the image.
distorted_image = tf.random_crop(reshaped_image, [height, width, 3])
# Randomly flip the image horizontally.
distorted_image = tf.image.random_flip_left_right(distorted_image)
# Because these operations are not commutative, consider randomizing
# the order their operation.
distorted_image = tf.image.random_brightness(distorted_image, max_delta=63)
distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8)
# Subtract off the mean and divide by the variance of the pixels.
float_image = tf.image.per_image_whitening(distorted_image)
# Ensure that the random shuffling has good mixing properties.
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
min_fraction_of_examples_in_queue)
print('Filling queue with %d CIFAR images before starting to train.'
'This will take a few minutes.' % min_queue_examples)
# Generate a batch of images and labels by building up a queue of examples.
return _generate_image_and_label_batch(float_image, read_input.label,
min_queue_examples, batch_size,
shuffle=True)
Run Code Online (Sandbox Code Playgroud)
lej*_*lot 10
是实际添加到原始图像池中的图像被扭曲了吗?
这取决于池的定义.在tensorflow中,您拥有ops网络图中的基本对象.在这里,数据生产本身就是一种操作.因此,您没有一组有限的训练样本,而是从训练集中生成了一组潜在的无限样本.
或者是使用扭曲的图像而不是原件?
从您所包含的来源中可以看出 - 样本来自训练批次,然后随机变换,因此使用未改变图像的概率非常小(特别是使用裁剪,总是修改).
有多少扭曲的图像正在制作?(即定义了什么增强因子?)
没有这样的事情,这是永无止境的过程.从随机访问可能无限的数据源的角度考虑这一点,因为这是在这里有效发生的事情.每一批都可以与前一批不同.
| 归档时间: |
|
| 查看次数: |
12283 次 |
| 最近记录: |