Abd*_*tir 13 python opencv image-processing blur smoothing
如何平滑阈值化后获得的血管二元图像的边缘.
我尝试了一种类似于这种方法的方法,但没有得到我预期的结果.
这是代码:
import cv2
import numpy as np
INPUT = cv2.imread('so-br-in.png',0)
MASK = np.array(INPUT/255.0, dtype='float32')
MASK = cv2.GaussianBlur(MASK, (5,5), 11)
BG = np.ones([INPUT.shape[0], INPUT.shape[1], 1], dtype='uint8')*255
OUT_F = np.ones([INPUT.shape[0], INPUT.shape[1], 1],dtype='uint8')
for r in range(INPUT.shape[0]):
for c in range(INPUT.shape[1]):
OUT_F[r][c] = int(BG[r][c]*(MASK[r][c]) + INPUT[r][c]*(1-MASK[r][c]))
cv2.imwrite('brain-out.png', OUT_F)
Run Code Online (Sandbox Code Playgroud)
可以做些什么来改善这些粗糙边缘的平滑度?
编辑
我想像http://pscs5.tumblr.com/post/60284570543那样平滑边缘.如何在OpenCV中执行此操作?
Sun*_*eef 18
我的方法主要基于cv::medianBlur
应用于放大图像的几种方法.
这是代码:
cv::Mat vesselImage = cv::imread(filename); //the original image
cv::threshold(vesselImage, vesselImage, 125, 255, THRESH_BINARY);
cv::Mat blurredImage; //output of the algorithm
cv::pyrUp(vesselImage, blurredImage);
for (int i = 0; i < 15; i++)
cv::medianBlur(blurredImage, blurredImage, 7);
cv::pyrDown(blurredImage, blurredImage);
cv::threshold(blurredImage, blurredImage, 200, 255, THRESH_BINARY);
Run Code Online (Sandbox Code Playgroud)
锯齿状边缘是由于阈值.如果您对非二进制的输出图像感到满意(即具有256级grAy),则可以将其删除并获得此图像:
您可以扩张然后侵蚀区域http://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilation/erosion_dilation.html。
import cv2
import numpy as np
blur=((3,3),1)
erode_=(5,5)
dilate_=(3, 3)
cv2.imwrite('imgBool_erode_dilated_blured.png',cv2.dilate(cv2.erode(cv2.GaussianBlur(cv2.imread('so-br-in.png',0)/255, blur[0], blur[1]), np.ones(erode_)), np.ones(dilate_))*255)
Run Code Online (Sandbox Code Playgroud)
我对@dhanushka对另一个问题的回答做了一些修改,并得到了这些图片。
抱歉,它是 C++ 代码,但也许您会将其转换为 Python。
您可以更改以下参数以获得不同的结果。
// contour smoothing parameters for gaussian filter
int filterRadius = 10; // you can try to change this value
int filterSize = 2 * filterRadius + 1;
double sigma = 20; // you can try to change this value
Run Code Online (Sandbox Code Playgroud)
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main( int argc, const char** argv )
{
Mat im = imread(argv[1], 0);
Mat cont = ~im;
Mat original = Mat::zeros(im.rows, im.cols, CV_8UC3);
Mat smoothed = Mat(im.rows, im.cols, CV_8UC3, Scalar(255,255,255));
// contour smoothing parameters for gaussian filter
int filterRadius = 5;
int filterSize = 2 * filterRadius + 1;
double sigma = 10;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
// find contours and store all contour points
findContours(cont, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_NONE, Point(0, 0));
for(size_t j = 0; j < contours.size(); j++)
{
// extract x and y coordinates of points. we'll consider these as 1-D signals
// add circular padding to 1-D signals
size_t len = contours[j].size() + 2 * filterRadius;
size_t idx = (contours[j].size() - filterRadius);
vector<float> x, y;
for (size_t i = 0; i < len; i++)
{
x.push_back(contours[j][(idx + i) % contours[j].size()].x);
y.push_back(contours[j][(idx + i) % contours[j].size()].y);
}
// filter 1-D signals
vector<float> xFilt, yFilt;
GaussianBlur(x, xFilt, Size(filterSize, filterSize), sigma, sigma);
GaussianBlur(y, yFilt, Size(filterSize, filterSize), sigma, sigma);
// build smoothed contour
vector<vector<Point> > smoothContours;
vector<Point> smooth;
for (size_t i = filterRadius; i < contours[j].size() + filterRadius; i++)
{
smooth.push_back(Point(xFilt[i], yFilt[i]));
}
smoothContours.push_back(smooth);
Scalar color;
if(hierarchy[j][3] < 0 )
{
color = Scalar(0,0,0);
}
else
{
color = Scalar(255,255,255);
}
drawContours(smoothed, smoothContours, 0, color, -1);
}
imshow( "result", smoothed );
waitKey(0);
}
Run Code Online (Sandbox Code Playgroud)