我有一个充满浮动(正面和负面)和一些NaN的DataFrame.我想用它的符号替换每个浮点数:
if it's NaN -> it remains Nan
if positive -> replace with 1
if negative -> replace with -1
if zero -> leave it as 0
Run Code Online (Sandbox Code Playgroud)
有什么建议可以进行大规模的替换?
先感谢您
ayh*_*han 23
你可以使用np.sign:
df
Out[100]:
A
0 -4.0
1 2.0
2 NaN
3 0.0
import numpy as np
np.sign(df["A"])
Out[101]:
0 -1.0
1 1.0
2 NaN
3 0.0
Name: A, dtype: float64
Run Code Online (Sandbox Code Playgroud)
要应用于所有列,您可以直接传递数据帧:
df
Out[121]:
0 1 2 3
0 -2.932447 -1.686652 NaN -0.908441
1 1.254436 0.000000 0.072242 0.796944
2 2.626737 0.169639 -1.457195 1.169238
3 0.000000 -1.174251 0.660111 1.115518
4 -1.998091 -0.125095 0.000000 -0.506782
np.sign(df)
Out[122]:
0 1 2 3
0 -1.0 -1.0 NaN -1.0
1 1.0 0.0 1.0 1.0
2 1.0 1.0 -1.0 1.0
3 0.0 -1.0 1.0 1.0
4 -1.0 -1.0 0.0 -1.0
Run Code Online (Sandbox Code Playgroud)
你可以使用boolean indexing:
import pandas as pd
import numpy as np
df = pd.DataFrame({'A':[-1,3,0,5],
'B':[4,5,6,5],
'C':[8,-9,np.nan,7]})
print (df)
A B C
0 -1 4 8.0
1 3 5 -9.0
2 0 6 NaN
3 5 5 7.0
Run Code Online (Sandbox Code Playgroud)
print (df > 0)
A B C
0 False True True
1 True True False
2 False True False
3 True True True
print (df < 0)
A B C
0 True False False
1 False False True
2 False False False
3 False False False
df[df > 0] = 1
df[df < 0] = -1
print (df)
A B C
0 -1 1 1.0
1 1 1 -1.0
2 0 1 NaN
3 1 1 1.0
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
9284 次 |
| 最近记录: |