Bip*_*tes 2 python matplotlib mouseevent coordinates
我想编写一个交互式Bezier曲线生成器,唯一的输入是图形上的鼠标单击坐标(使用matplotlib.pyplot)
因此,我想知道如何获取这些坐标,以及如何使用class和self.functions尽可能简单地将它们堆叠在x轴和y轴的两个列表中。
谢谢 !
双拼
matplotlib中有一个事件,当您单击绘图时会返回鼠标坐标。检查以下食谱:
import numpy as np
import matplotlib.pyplot as plt
class LineBuilder:
def __init__(self, line,ax,color):
self.line = line
self.ax = ax
self.color = color
self.xs = []
self.ys = []
self.cid = line.figure.canvas.mpl_connect('button_press_event', self)
self.counter = 0
self.shape_counter = 0
self.shape = {}
self.precision = 10
def __call__(self, event):
if event.inaxes!=self.line.axes: return
if self.counter == 0:
self.xs.append(event.xdata)
self.ys.append(event.ydata)
if np.abs(event.xdata-self.xs[0])<=self.precision and np.abs(event.ydata-self.ys[0])<=self.precision and self.counter != 0:
self.xs.append(self.xs[0])
self.ys.append(self.ys[0])
self.ax.scatter(self.xs,self.ys,s=120,color=self.color)
self.ax.scatter(self.xs[0],self.ys[0],s=80,color='blue')
self.ax.plot(self.xs,self.ys,color=self.color)
self.line.figure.canvas.draw()
self.shape[self.shape_counter] = [self.xs,self.ys]
self.shape_counter = self.shape_counter + 1
self.xs = []
self.ys = []
self.counter = 0
else:
if self.counter != 0:
self.xs.append(event.xdata)
self.ys.append(event.ydata)
self.ax.scatter(self.xs,self.ys,s=120,color=self.color)
self.ax.plot(self.xs,self.ys,color=self.color)
self.line.figure.canvas.draw()
self.counter = self.counter + 1
def create_shape_on_image(data,cmap='jet'):
def change_shapes(shapes):
new_shapes = {}
for i in range(len(shapes)):
l = len(shapes[i][1])
new_shapes[i] = np.zeros((l,2),dtype='int')
for j in range(l):
new_shapes[i][j,0] = shapes[i][0][j]
new_shapes[i][j,1] = shapes[i][1][j]
return new_shapes
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title('click to include shape markers (10 pixel precision to close the shape)')
line = ax.imshow(data)
ax.set_xlim(0,data[:,:,0].shape[1])
ax.set_ylim(0,data[:,:,0].shape[0])
linebuilder = LineBuilder(line,ax,'red')
plt.gca().invert_yaxis()
plt.show()
new_shapes = change_shapes(linebuilder.shape)
return new_shapes
img = np.zeros((100,100,3),dtype='uint')
shapes = create_shape_on_image(img)[0]
print(shapes)
Run Code Online (Sandbox Code Playgroud)
它有点扩展(您也可以检查matplotlib示例之一),但是它可以直观地查看您单击的位置(可以放置图像而不是背景的“黑色” numpy数组)。结果应该是这样的:
最初是为了使形状封闭而设计的,但可以满足您的需求。关闭图解后,您将获得print实际坐标:
[[54 13]
[19 39]
[19 77]
[58 78]
[93 45]
[90 11]
[54 13]]
Run Code Online (Sandbox Code Playgroud)
如果您希望以比较适度的方式开始(一个简单的click事件以将坐标打印到控制台),请使用以下方法:
import matplotlib.pyplot as plt
def onclick(event):
print(event.xdata, event.ydata)
fig,ax = plt.subplots()
ax.plot(range(10))
fig.canvas.mpl_connect('button_press_event', onclick)
plt.show()
Run Code Online (Sandbox Code Playgroud)