Mar*_*ius 1 java optimization performance jit
我正在编写我的应用程序的性能敏感部分,我很好奇JIT编译器(如果有的话)将如何优化以下方法:
private static int alphaBlend(int foreground, int background) {
int alpha = (foreground >> 24) & 0xFF;
int subAlpha = 0xFF - alpha;
return ((((((foreground >> 16) & 0xFF) * alpha) + (((background >> 16) & 0xFF)) * subAlpha) >> 8) << 16)
| ((((((foreground >> 8) & 0xFF) * alpha) + (((background >> 8) & 0xFF)) * subAlpha) >> 8) << 8)
| ((((foreground & 0xFF) * alpha) + ((background & 0xFF)) * subAlpha) >> 8);
}
private static int alphaBlendLoop(int foreground, int background) {
int alpha = (foreground >> 24) & 0xFF;
int subAlpha = 0xFF - alpha;
int blended = 0;
for (int shift = 16; shift >= 0; shift -= 8) {
blended |= (((((foreground >> shift) & 0xFF) * alpha) + (((background >> shift) & 0xFF)) * subAlpha) >> 8) << shift;
}
return blended;
}
Run Code Online (Sandbox Code Playgroud)
这些方法执行alpha混合.基本上,它们将前景RGBA像素与背景RGB像素组合,其RGB分量值已预先乘以α值.
这两种方法都为相同的输入返回相同的值,但它们的实现是不同的.就个人而言,我发现后一种实现更容易阅读,但我担心它可能性能较差.对于那些感兴趣的人(它是使用IntelliJ的"Show Bytecode"视图生成),下面包含了两种实现的字节码:
private static alphaBlend(II)I
L0
LINENUMBER 95 L0
ILOAD 0
BIPUSH 24
ISHR
SIPUSH 255
IAND
ISTORE 2
L1
LINENUMBER 96 L1
SIPUSH 255
ILOAD 2
ISUB
ISTORE 3
L2
LINENUMBER 97 L2
ILOAD 0
BIPUSH 16
ISHR
SIPUSH 255
IAND
ILOAD 2
IMUL
ILOAD 1
BIPUSH 16
ISHR
SIPUSH 255
IAND
ILOAD 3
IMUL
IADD
BIPUSH 8
ISHR
BIPUSH 16
ISHL
ILOAD 0
BIPUSH 8
ISHR
SIPUSH 255
IAND
ILOAD 2
IMUL
ILOAD 1
BIPUSH 8
ISHR
SIPUSH 255
IAND
ILOAD 3
IMUL
IADD
BIPUSH 8
ISHR
BIPUSH 8
ISHL
IOR
ILOAD 0
SIPUSH 255
IAND
ILOAD 2
IMUL
ILOAD 1
SIPUSH 255
IAND
ILOAD 3
IMUL
IADD
BIPUSH 8
ISHR
IOR
IRETURN
L3
LOCALVARIABLE foreground I L0 L3 0
LOCALVARIABLE background I L0 L3 1
LOCALVARIABLE alpha I L1 L3 2
LOCALVARIABLE subAlpha I L2 L3 3
MAXSTACK = 4
MAXLOCALS = 4
private static alphaBlendLoop(II)I
L0
LINENUMBER 103 L0
ILOAD 0
BIPUSH 24
ISHR
SIPUSH 255
IAND
ISTORE 2
L1
LINENUMBER 104 L1
SIPUSH 255
ILOAD 2
ISUB
ISTORE 3
L2
LINENUMBER 105 L2
ICONST_0
ISTORE 4
L3
LINENUMBER 106 L3
BIPUSH 16
ISTORE 5
L4
FRAME FULL [I I I I I I] []
ILOAD 5
IFLT L5
L6
LINENUMBER 107 L6
ILOAD 4
ILOAD 0
ILOAD 5
ISHR
SIPUSH 255
IAND
ILOAD 2
IMUL
ILOAD 1
ILOAD 5
ISHR
SIPUSH 255
IAND
ILOAD 3
IMUL
IADD
BIPUSH 8
ISHR
ILOAD 5
ISHL
IOR
ISTORE 4
L7
LINENUMBER 106 L7
IINC 5 -8
GOTO L4
L5
LINENUMBER 109 L5
FRAME CHOP 1
ILOAD 4
IRETURN
L8
LOCALVARIABLE shift I L4 L5 5
LOCALVARIABLE foreground I L0 L8 0
LOCALVARIABLE background I L0 L8 1
LOCALVARIABLE alpha I L1 L8 2
LOCALVARIABLE subAlpha I L2 L8 3
LOCALVARIABLE blended I L3 L8 4
MAXSTACK = 4
MAXLOCALS = 6
Run Code Online (Sandbox Code Playgroud)
直观地说,循环需要更多的"工作"和操作(跳跃,评估条件,减少等).但是,循环也是非常可预测的; 它将始终执行三次,并且在其范围内定义的变量将始终具有相同的三个值.
在这种情况下,JIT编译器(或更智能的静态编译器?)是否能够通过将其扩展为如alphaBlend实现中所见的长单行来优化这样的简单循环?或者循环通常是不能以这种方式优化的东西?
是的,HotSpot JIT支持循环展开和常量传播优化,可以转换alphaBlendLoop为类似于手动展开的东西alphaBlend.
我个人更喜欢第三种选择:一个小帮助函数,使代码更具可读性:
private static int blend(int foreground, int background, int alpha, int shift) {
int fg = (foreground >>> shift) & 0xff;
int bg = (background >>> shift) & 0xff;
return (fg * alpha + bg * (256 - alpha)) >>> 8 << shift;
}
public static int alphaBlend(int foreground, int background) {
int alpha = foreground >>> 24;
int R = blend(foreground, background, alpha, 0);
int G = blend(foreground, background, alpha, 8);
int B = blend(foreground, background, alpha, 16);
return R | G | B;
}
Run Code Online (Sandbox Code Playgroud)
我已经制作了一个JMH基准来验证所有3个选项的性能是否相似.
在Java 8u77 x64上测试.
Benchmark Mode Cnt Score Error Units
Blend.alphaBlendInline avgt 10 7,831 ± 0,045 ns/op
Blend.alphaBlendLoop avgt 10 7,860 ± 0,025 ns/op
Blend.alphaBlendMethod avgt 10 7,769 ± 0,056 ns/op
Run Code Online (Sandbox Code Playgroud)