使用Pyspark读取S3上随机的文件样本

nei*_*usc 6 python amazon-s3 amazon-emr apache-spark pyspark

我在S3上有一个包含1000个文件的存储桶.每个约1GB.我想阅读这些文件的随机样本.让我们说5%的文件.我就是这样做的

fileDF = sqlContext.jsonRDD(self.sc.textFile(self.path).sample(withReplacement=False, fraction=0.05, seed=42).repartition(160))

但似乎上面的代码将读取所有文件然后采样.虽然我想采取文件样本并阅读它们.有人可以帮忙吗?

小智 4

使用您最喜欢的方法列出路径下的文件,获取名称样本,然后使用 RDD union:

import pyspark
import random

sc = pyspark.SparkContext(appName = "Sampler")
file_list = list_files(path)
desired_pct = 5
file_sample = random.sample(file_list, int(len(file_list) * desired_pct / 100))
file_sample_rdd = sc.emptyRDD()
for f in file_sample:
    file_sample_rdd = file_sample_rdd.union(sc.textFile(f))
sample_data_rdd = file_sample_rdd.repartition(160)
Run Code Online (Sandbox Code Playgroud)

这是“list_files”的一种可能的快速但肮脏的实现,它将列出 S3 上“目录”下的文件:

import os
def list_files(path, profile = None):
    if not path.endswith("/"):
        raise Exception("not handled...")
    command = 'aws s3 ls %s' % path
    if profile is not None:
        command = 'aws --profile %s s3 ls %s' % (profile, path)
    result = os.popen(command)
    _r = result.read().strip().split('\n')
    _r = [path + i.strip().split(' ')[-1] for i in _r]
    return _r
Run Code Online (Sandbox Code Playgroud)