zem*_*eng 12 python dataframe apache-spark apache-spark-sql pyspark
我有一个包含2个ArrayType字段的PySpark DataFrame:
>>>df
DataFrame[id: string, tokens: array<string>, bigrams: array<string>]
>>>df.take(1)
[Row(id='ID1', tokens=['one', 'two', 'two'], bigrams=['one two', 'two two'])]
Run Code Online (Sandbox Code Playgroud)
我想将它们组合成一个ArrayType字段:
>>>df2
DataFrame[id: string, tokens_bigrams: array<string>]
>>>df2.take(1)
[Row(id='ID1', tokens_bigrams=['one', 'two', 'two', 'one two', 'two two'])]
Run Code Online (Sandbox Code Playgroud)
使用字符串的语法似乎不起作用:
df2 = df.withColumn('tokens_bigrams', df.tokens + df.bigrams)
Run Code Online (Sandbox Code Playgroud)
谢谢!
zer*_*323 27
Spark> = 2.4
你可以使用concat功能(SPARK-23736):
from pyspark.sql.functions import col, concat
df.select(concat(col("tokens"), col("tokens_bigrams"))).show(truncate=False)
# +---------------------------------+
# |concat(tokens, tokens_bigrams) |
# +---------------------------------+
# |[one, two, two, one two, two two]|
# |null |
# +---------------------------------+
Run Code Online (Sandbox Code Playgroud)
为了保持数据时的值之一是NULL,你可以coalesce用array:
from pyspark.sql.functions import array, coalesce
df.select(concat(
coalesce(col("tokens"), array()),
coalesce(col("tokens_bigrams"), array())
)).show(truncate = False)
# +--------------------------------------------------------------------+
# |concat(coalesce(tokens, array()), coalesce(tokens_bigrams, array()))|
# +--------------------------------------------------------------------+
# |[one, two, two, one two, two two] |
# |[three] |
# +--------------------------------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
Spark <2.4
不幸的是,array在一般情况下连接列你需要一个UDF,例如:
from itertools import chain
from pyspark.sql.functions import col, udf
from pyspark.sql.types import *
def concat(type):
def concat_(*args):
return list(chain.from_iterable((arg if arg else [] for arg in args)))
return udf(concat_, ArrayType(type))
Run Code Online (Sandbox Code Playgroud)
可以用作:
df = spark.createDataFrame(
[(["one", "two", "two"], ["one two", "two two"]), (["three"], None)],
("tokens", "tokens_bigrams")
)
concat_string_arrays = concat(StringType())
df.select(concat_string_arrays("tokens", "tokens_bigrams")).show(truncate=False)
# +---------------------------------+
# |concat_(tokens, tokens_bigrams) |
# +---------------------------------+
# |[one, two, two, one two, two two]|
# |[three] |
# +---------------------------------+
Run Code Online (Sandbox Code Playgroud)
在 Spark 2.4.0(Databricks 平台上的 2.3)中,您可以使用 concat 函数在 DataFrame API 中进行本机操作。在您的示例中,您可以这样做:
from pyspark.sql.functions import col, concat
df.withColumn('tokens_bigrams', concat(col('tokens'), col('bigrams')))
Run Code Online (Sandbox Code Playgroud)
这是相关的jira。
| 归档时间: |
|
| 查看次数: |
15290 次 |
| 最近记录: |