我如何编写一个函数来为我提供列表元素的随机索引,但基于列表中的概率?
该列表看起来像这样,有 5 个元素。
a = [0.1, 0.2, 0.4, 0.2, 0.1]
Run Code Online (Sandbox Code Playgroud)
有没有简单快速的解决方案?谢谢
这听起来像是Numpynumpy.random.choice()及其p参数的工作:
Run Code Online (Sandbox Code Playgroud)p : 1-D array-like, optional The probabilities associated with each entry in a. If not given, the sample assumes a uniform distribtion over all entries in a.
因此,如果只有一个列表(其中一个元素既是每个元素的概率,也是要选择的元素本身,您可以这样做:
from numpy.random import choice
elementsAndProbabilities = [0.1, 0.2, 0.4, 0.2, 0.1]
randomElement = choice(elementsAndProbabilities, p=elementsAndProbabilities)
print randomElement
Run Code Online (Sandbox Code Playgroud)
如果你有一个元素列表和每个元素的概率列表(单独的),你可以这样做:
from numpy.random import choice
elements = ["first", "second", "third", "fourth", "fifth"]
probabilities = [0.1, 0.2, 0.4, 0.2, 0.1]
randomElement = choice(elements, p=probabilities)
print randomElement
Run Code Online (Sandbox Code Playgroud)
现在,你说你想要索引,而不是元素,所以我们可以像这样得到索引:
from numpy.random import choice
probabilities = [0.1, 0.2, 0.4, 0.2, 0.1]
randomElement = choice(range(len(probabilities)), p=probabilities)
print randomElement
Run Code Online (Sandbox Code Playgroud)
如果你有 NumPy 可能会更快,但如果没有,这里有一个纯 Python 解决方案。
from random import random
a = [0.1, 0.2, 0.4, 0.2, 0.1]
def randombin(bins):
r = random()
p = 0
for i, v in enumerate(bins):
p += v
if r < p:
return i
# p may not equal exactly 1.0 due to floating-point rounding errors
# so if we get here, just try again (the errors are small, so this
# should not happen very often). You could also just put it in the
# last bin or pick a bin at random, depending on your tolerance for
# small biases
return randombin(bins)
print randombin(a)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3087 次 |
| 最近记录: |