如何绘制GridSearchCV的网格分数?

kro*_*ike 21 python machine-learning scikit-learn grid-search

我正在寻找一种从sklearn中的GridSearchCV图形grid_scores_的方法.在这个例子中,我试图网格搜索SVR算法的最佳gamma和C参数.我的代码如下:

    C_range = 10.0 ** np.arange(-4, 4)
    gamma_range = 10.0 ** np.arange(-4, 4)
    param_grid = dict(gamma=gamma_range.tolist(), C=C_range.tolist())
    grid = GridSearchCV(SVR(kernel='rbf', gamma=0.1),param_grid, cv=5)
    grid.fit(X_train,y_train)
    print(grid.grid_scores_)
Run Code Online (Sandbox Code Playgroud)

运行代码并打印网格分数后,我得到以下结果:

[mean: -3.28593, std: 1.69134, params: {'gamma': 0.0001, 'C': 0.0001}, mean: -3.29370, std: 1.69346, params: {'gamma': 0.001, 'C': 0.0001}, mean: -3.28933, std: 1.69104, params: {'gamma': 0.01, 'C': 0.0001}, mean: -3.28925, std: 1.69106, params: {'gamma': 0.1, 'C': 0.0001}, mean: -3.28925, std: 1.69106, params: {'gamma': 1.0, 'C': 0.0001}, mean: -3.28925, std: 1.69106, params: {'gamma': 10.0, 'C': 0.0001},etc] 
Run Code Online (Sandbox Code Playgroud)

我想根据gamma和C参数可视化所有分数(平均值).我想要获得的图表应如下所示:

在此输入图像描述

在x轴是伽马的情况下,y轴是平均分数(在这种情况下是均方根误差),并且不同的线代表不同的C值.

小智 35

@sascha显示的代码是正确的.但是,该grid_scores_属性很快就会被弃用.最好使用该cv_results属性.

它可以以与@sascha方法类似的方式实现:

def plot_grid_search(cv_results, grid_param_1, grid_param_2, name_param_1, name_param_2):
    # Get Test Scores Mean and std for each grid search
    scores_mean = cv_results['mean_test_score']
    scores_mean = np.array(scores_mean).reshape(len(grid_param_2),len(grid_param_1))

    scores_sd = cv_results['std_test_score']
    scores_sd = np.array(scores_sd).reshape(len(grid_param_2),len(grid_param_1))

    # Plot Grid search scores
    _, ax = plt.subplots(1,1)

    # Param1 is the X-axis, Param 2 is represented as a different curve (color line)
    for idx, val in enumerate(grid_param_2):
        ax.plot(grid_param_1, scores_mean[idx,:], '-o', label= name_param_2 + ': ' + str(val))

    ax.set_title("Grid Search Scores", fontsize=20, fontweight='bold')
    ax.set_xlabel(name_param_1, fontsize=16)
    ax.set_ylabel('CV Average Score', fontsize=16)
    ax.legend(loc="best", fontsize=15)
    ax.grid('on')

# Calling Method 
plot_grid_search(pipe_grid.cv_results_, n_estimators, max_features, 'N Estimators', 'Max Features')
Run Code Online (Sandbox Code Playgroud)

以上结果如下:

在此输入图像描述

  • grid_param_1、grid_param_2、name_param_1、name_param_2 中的输入值是什么? (6认同)
  • 我收到“ValueError:无法将大小为 64 的数组重塑为形状 (64,64)” (3认同)
  • pipeline_grid.cv_results_, n_estimators, max_features, 'N Estimators', 'Max Features' --- 顺便说一句,它在代码的最后一行。 (2认同)

sas*_*cha 13

from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn import datasets
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

digits = datasets.load_digits()
X = digits.data
y = digits.target

clf_ = SVC(kernel='rbf')
Cs = [1, 10, 100, 1000]
Gammas = [1e-3, 1e-4]
clf = GridSearchCV(clf_,
            dict(C=Cs,
                 gamma=Gammas),
                 cv=2,
                 pre_dispatch='1*n_jobs',
                 n_jobs=1)

clf.fit(X, y)

scores = [x[1] for x in clf.grid_scores_]
scores = np.array(scores).reshape(len(Cs), len(Gammas))

for ind, i in enumerate(Cs):
    plt.plot(Gammas, scores[ind], label='C: ' + str(i))
plt.legend()
plt.xlabel('Gamma')
plt.ylabel('Mean score')
plt.show()
Run Code Online (Sandbox Code Playgroud)
  • 代码就是基于.
  • 只有令人费解的部分:将sklearn始终尊重C&Gamma的顺序 - >官方示例使用此"订购"

输出:

示例图

  • 现在不推荐使用`grid_scores_`属性。查看David Alvarez的答案。 (3认同)

小智 5

为了在调整多个超参数时绘制结果,我所做的是将所有参数固定为其最佳值,除了一个参数,并为每个值绘制另一个参数的平均分数。

def plot_search_results(grid):
    """
    Params: 
        grid: A trained GridSearchCV object.
    """
    ## Results from grid search
    results = grid.cv_results_
    means_test = results['mean_test_score']
    stds_test = results['std_test_score']
    means_train = results['mean_train_score']
    stds_train = results['std_train_score']

    ## Getting indexes of values per hyper-parameter
    masks=[]
    masks_names= list(grid.best_params_.keys())
    for p_k, p_v in grid.best_params_.items():
        masks.append(list(results['param_'+p_k].data==p_v))

    params=grid.param_grid

    ## Ploting results
    fig, ax = plt.subplots(1,len(params),sharex='none', sharey='all',figsize=(20,5))
    fig.suptitle('Score per parameter')
    fig.text(0.04, 0.5, 'MEAN SCORE', va='center', rotation='vertical')
    pram_preformace_in_best = {}
    for i, p in enumerate(masks_names):
        m = np.stack(masks[:i] + masks[i+1:])
        pram_preformace_in_best
        best_parms_mask = m.all(axis=0)
        best_index = np.where(best_parms_mask)[0]
        x = np.array(params[p])
        y_1 = np.array(means_test[best_index])
        e_1 = np.array(stds_test[best_index])
        y_2 = np.array(means_train[best_index])
        e_2 = np.array(stds_train[best_index])
        ax[i].errorbar(x, y_1, e_1, linestyle='--', marker='o', label='test')
        ax[i].errorbar(x, y_2, e_2, linestyle='-', marker='^',label='train' )
        ax[i].set_xlabel(p.upper())

    plt.legend()
    plt.show()
Run Code Online (Sandbox Code Playgroud)

结果