hac*_*ape 9 javascript y-combinator
我相信我的理解数学的Y组合子的想法:它返回的功能给出一个固定点F,从而f = Y(F)在那里f满足f == F(f).
但我不明白实际的计算程序是如何明智的?
我们来看一下这里给出的javascript示例:
var Y = (F) => ( x => F( y => x(x)(y) ) )( x => F( y => x(x)(y) ) )
var Factorial = (factorial) => (n => n == 0 ? 1 : n * factorial(n-1))
Y(Factorial)(6) == 720 // => true
computed_factorial = Y(Factorial)
Run Code Online (Sandbox Code Playgroud)
我不明白的部分是如何computed_factorial实际计算函数(固定点)?通过跟踪Y的定义,你会发现它在该部分遇到无限递归x(x),我看不到那里隐含的任何终止案例.然而,奇怪的确回来了.谁能解释一下?
我将使用 ES6 箭头函数语法。既然您似乎了解 CoffeeScript,那么阅读它应该不会有任何困难。
这是你的 Y 组合器
var Y = F=> (x=> F (y=> x (x) (y))) (x=> F (y=> x (x) (y)))
Run Code Online (Sandbox Code Playgroud)
我将使用你的factorial函数的改进版本。这个使用累加器来代替,这将防止评估变成一个大金字塔。该函数的过程将是线性迭代的,而您的过程将是递归的。当 ES6 最终消除尾部调用时,这会产生更大的差异。
语法上的差异是名义上的。无论如何,这并不重要,因为您只是想看看如何Y评估。
var factorial = Y (fact=> acc=> n=>
n < 2 ? acc : fact (acc*n) (n-1)
) (1);
Run Code Online (Sandbox Code Playgroud)
好吧,这已经导致计算机开始做一些工作。因此,在我们进一步讨论之前,让我们先评估一下......
我希望你的文本编辑器中有一个非常好的括号荧光笔......
var factorial
= Y (f=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (1) // sub Y
= (F=> (x=> F (y=> x (x) (y))) (x=> F (y=> x (x) (y)))) (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (1) // apply F=> to fact=>
= (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (1) // apply x=> to x=>
= (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (1) // apply fact=> to y=>
= (acc=> n=> n < 2 ? acc : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (acc*n) (n-1)) (1) // apply acc=> to 1
= n=> n < 2 ? 1 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (1*n) (n-1) // return value
= [Function] (n=> ...)
Run Code Online (Sandbox Code Playgroud)
因此,在我们致电后您可以看到:
var factorial = Y(fact=> acc=> n=> ...) (1);
//=> [Function] (n=> ...)
Run Code Online (Sandbox Code Playgroud)
我们得到一个正在等待单个输入的函数n。现在让我们运行一个阶乘
在我们继续之前,您可以通过将其复制/粘贴到 javascript repl 中来验证(并且您应该)此处的每一行都正确。每一行都会返回
24(这是 的正确答案factorial(4)。抱歉,如果我破坏了你的答案)。这就像当你简化分数、求解代数方程或平衡化学公式时一样;每一步都应该是正确答案。请务必一直向右滚动以查看我的评论。我告诉你我在每一行完成了哪些操作。完成操作的结果在后续行中。
并确保您再次手边有括号荧光笔......
factorial (4) // sub factorial
= (n=> n < 2 ? 1 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (1*n) (n-1)) (4) // apply n=> to 4
= 4 < 2 ? 1 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (1*4) (4-1) // 4 < 2
= false ? 1 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (1*4) (4-1) // ?:
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (1*4) (4-1) // 1*4
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (4) (4-1) // 4-1
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (4) (3) // apply y=> to 4
= (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (4) (3) // apply x=> to x=>
= (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (4) (3) // apply fact=> to y=>
= (acc=> n=> n < 2 ? acc : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (acc*n) (n-1)) (4) (3) // apply acc=> to 4
= (n=> n < 2 ? 4 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (4*n) (n-1)) (3) // apply n=> to 3
= 3 < 2 ? 4 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (4*3) (3-1) // 3 < 2
= false ? 4 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (4*3) (3-1) // ?:
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (4*3) (3-1) // 4*2
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (12) (3-1) // 3-1
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (12) (2) // apply y=> to 12
= (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (12) (2) // apply x=> to y=>
= (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (12) (2) // apply fact=> to y=>
= (acc=> n=> n < 2 ? acc : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (acc*n) (n-1)) (12) (2) // apply acc=> 12
= (n=> n < 2 ? 12 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (12*n) (n-1)) (2) // apply n=> 2
= 2 < 2 ? 12 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (12*2) (2-1) // 2 < 2
= false ? 12 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (12*2) (2-1) // ?:
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (12*2) (2-1) // 12*2
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (24) (2-1) // 2-1
= (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (24) (1) // apply y=> to 24
= (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (24) (1) // apply x=> to x=>
= (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (24) (1) // apply fact=> to y=>
= (acc=> n=> n < 2 ? acc : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (acc*n) (n-1)) (24) (1) // apply acc=> to 24
= (n=> n < 2 ? 24 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (24*n) (n-1)) (1) // apply n=> to 1
= 1 < 2 ? 24 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (24*1) (1-1) // 1 < 2
= true ? 24 : (y=> (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (x=> (fact=> acc=> n=> n < 2 ? acc : fact (acc*n) (n-1)) (y=> x (x) (y))) (y)) (24*1) (1-1) // ?:
= 24
Run Code Online (Sandbox Code Playgroud)
Y我也见过其他实现。这是从头开始构建另一个(用于 JavaScript)的简单过程。
// text book
var Y = f=> f (Y (f))
// prevent immediate recursion (javascript is applicative order)
var Y = f=> f (x=> Y (f) (x))
// remove recursion using U combinator
var Y = U (h=> f=> f (x=> h (h) (f) (x)))
// given: U = f=> f (f)
var Y = (h=> f=> f (x=> h (h) (f) (x))) (h=> f=> f (x=> h (h) (f) (x)))
Run Code Online (Sandbox Code Playgroud)