Spark数据帧 - 如何用连续的整数值填充空值?

aar*_*ler 2 python dataframe apache-spark pyspark spark-dataframe

假设我有一个像这样的pyspark数据帧:

KEY    VALUE
---    -----
623    "cat"
245    "dog"
null   "horse"
null   "pig"
331    "narwhal"
null   "snake"
Run Code Online (Sandbox Code Playgroud)

如何转换此数据帧,以便列中的任何nullKEY都替换为从1?开始的整数序列?期望的结果如下:

KEY    VALUE
---    -----
623    "cat"
245    "dog"
1      "horse"
2      "pig"
331    "narwhal"
3      "snake"
Run Code Online (Sandbox Code Playgroud)

Dav*_*fin 6

我知道你要求Python,但也许Scala中的等价物会有所帮助.基本上,您希望将该Window功能rank与功能一起使用coalesce.首先我们定义一些测试数据:

val df = Seq(
  (Option(623), "cat"),
  (Option(245),"dog"),
  (None, "horse"),
  (None, "pig"),
  (Option(331), "narwhal"),
  (None, "snake")
).toDF("key","value")
Run Code Online (Sandbox Code Playgroud)

然后我们将rank所有a的实例key,然后我们将用于coalesce选择原始key或新的rank,然后删除rank我们创建的列只是为了清理它:

import org.apache.spark.sql.expressions._
import org.apache.spark.sql.functions._

val window = Window.partitionBy(col("key")).orderBy(col("value"))
df.withColumn("rank", rank.over(window))
  .withColumn("key", coalesce(col("key"),col("rank")))
  .drop("rank")
Run Code Online (Sandbox Code Playgroud)