tkj*_*kja 5 python scikit-learn
如何在 scikit learn 中使用 FeatureUnion,以便 Gridsearch 可以选择处理其部分?
下面的代码可以工作并使用 TfidfVectorizer 为单词和字符 TfidfVectorizer 设置一个 FeatureUnion。
在进行 Gridsearch 时,除了测试定义的参数空间之外,我还想仅测试带有 ngram_range 参数的 'vect__wordvect'(没有用于字符的 TfidfVectorizer),并且仅测试带有小写参数 True 的 'vect__lettervect'和 False,另一个 TfidfVectorizer 被禁用。
编辑:基于 maxymoo 建议的完整代码示例。
如何才能做到这一点?
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.grid_search import GridSearchCV
from sklearn.datasets import fetch_20newsgroups
# setup the featureunion
wordvect = TfidfVectorizer(analyzer='word')
lettervect = CountVectorizer(analyzer='char')
featureunionvect = FeatureUnion([("lettervect", lettervect), ("wordvect", wordvect)])
# setup the pipeline
classifier = LogisticRegression(class_weight='balanced')
pipeline = Pipeline([('vect', featureunionvect), ('classifier', classifier)])
# gridsearch parameters
parameters = {
'vect__wordvect__ngram_range': [(1, 1), (1, 2)], # commenting out these two lines
'vect__lettervect__lowercase': [True, False], # runs, but there is no parameterization anymore
'vect__transformer_list': [[('wordvect', wordvect)],
[('lettervect', lettervect)],
[('wordvect', wordvect), ('lettervect', lettervect)]]}
gs_clf = GridSearchCV(pipeline, parameters)
# data
newsgroups_train = fetch_20newsgroups(subset='train', categories=['alt.atheism', 'sci.space'])
# gridsearch CV
gs_clf = GridSearchCV(pipeline, parameters)
gs_clf = gs_clf.fit(newsgroups_train.data, newsgroups_train.target)
for score in gs_clf.grid_scores_:
print "gridsearch scores: ", score
Run Code Online (Sandbox Code Playgroud)
有FeatureUnion一个名为的参数transformer_list,您可以使用它来进行网格搜索;所以在你的情况下你的网格搜索参数将变成
parameters = {'vect__wordvect__ngram_range': [(1, 1), (1, 2)],
'vect__lettervect__lowercase': [True, False],
'vect__transformer_weights': [{"lettervect":1,"wordvect":0},
{"lettervect":0,"wordvect":1},
{"lettervect":1,"wordvect":1}]}
Run Code Online (Sandbox Code Playgroud)