tot*_*uta 15 deep-learning lstm keras recurrent-neural-network
我在为Keras准备RNN的输入数据时遇到了麻烦.
目前,我的培训数据维度是: (6752, 600, 13)
X_train
并且Y_train
都在这个方面.
我想把这些数据准备好SimpleRNN
用于Keras.假设我们正在经历时间步骤,从步骤#0到步骤#599.假设我想使用input_length = 5
,这意味着我想使用最近的5个输入.(例如步骤#10,#11,#12,#13,#14 @步骤#14).
我应该如何重塑X_train
?
应该是(6752, 5, 600, 13)
或应该是(6752, 600, 5, 13)
吗?
什么形状应该Y_train
在?
它应该是(6752, 600, 13)
或(6752, 1, 600, 13)
或(6752, 600, 1, 13)
?
Lor*_*rit 17
如果您只想使用最近的5个输入预测输出,则无需提供任何训练样本的完整600个时间步长.我的建议是以下列方式传递培训数据:
t=0 t=1 t=2 t=3 t=4 t=5 ... t=598 t=599
sample0 |---------------------|
sample0 |---------------------|
sample0 |-----------------
...
sample0 ----|
sample0 ----------|
sample1 |---------------------|
sample1 |---------------------|
sample1 |-----------------
....
....
sample6751 ----|
sample6751 ----------|
Run Code Online (Sandbox Code Playgroud)
训练序列的总数将总计为
(600 - 4) * 6752 = 4024192 # (nb_timesteps - discarded_tailing_timesteps) * nb_samples
Run Code Online (Sandbox Code Playgroud)
每个训练序列包括5个时间步骤.在每个序列的每个时间步,您都会传递特征向量的所有13个元素.随后,训练数据的形状将是(4024192,5,13).
此循环可以重塑您的数据:
input = np.random.rand(6752,600,13)
nb_timesteps = 5
flag = 0
for sample in range(input.shape[0]):
tmp = np.array([input[sample,i:i+nb_timesteps,:] for i in range(input.shape[1] - nb_timesteps + 1)])
if flag==0:
new_input = tmp
flag = 1
else:
new_input = np.concatenate((new_input,tmp))
Run Code Online (Sandbox Code Playgroud)
这是一个为 LSTN/RNN 创建 3D 数据的快速过程,没有循环并涉及这个简单的功能
def create_windows(data, window_shape, step = 1, start_id = None, end_id = None):
data = np.asarray(data)
data = data.reshape(-1,1) if np.prod(data.shape) == max(data.shape) else data
start_id = 0 if start_id is None else start_id
end_id = data.shape[0] if end_id is None else end_id
data = data[int(start_id):int(end_id),:]
window_shape = (int(window_shape), data.shape[-1])
step = (int(step),) * data.ndim
slices = tuple(slice(None, None, st) for st in step)
indexing_strides = data[slices].strides
win_indices_shape = ((np.array(data.shape) - window_shape) // step) + 1
new_shape = tuple(list(win_indices_shape) + list(window_shape))
strides = tuple(list(indexing_strides) + list(data.strides))
window_data = np.lib.stride_tricks.as_strided(data, shape=new_shape, strides=strides)
return np.squeeze(window_data, 1)
Run Code Online (Sandbox Code Playgroud)
从这个样本数据开始:
n_sample = 2000
n_feat_inp = 6
n_feat_out = 1
X = np.asarray([np.arange(n_sample)]*n_feat_inp).T # (n_sample, n_feat_inp)
y = np.asarray([np.arange(n_sample)]*n_feat_out).T # (n_sample, n_feat_out)
Run Code Online (Sandbox Code Playgroud)
如果我们想要提前一步预测
look_back = 5
look_ahead = 1
X_seq = create_windows(X, window_shape = look_back, end_id = -look_ahead)
# X_seq.shape --> (n_sample - look_back, look_back, n_feat_inp)
y_seq = create_windows(y, window_shape = look_ahead, start_id = look_back)
# y_seq.shape --> (n_sample - look_back, look_ahead, n_feat_out)
Run Code Online (Sandbox Code Playgroud)
生成的数据示例:
X_seq[0]: [[0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4]]
y_seq[0]: [[5]]
Run Code Online (Sandbox Code Playgroud)
如果我们想要多步预测
look_back = 5
look_ahead = 3
X_seq = create_windows(X, window_shape = look_back, end_id = -look_ahead)
# X_seq.shape --> (n_sample - look_back - look_ahead + 1, look_back, n_feat_inp)
y_seq = create_windows(y, window_shape = look_ahead, start_id = look_back)
# y_seq.shape --> (n_sample - look_back - look_ahead + 1, look_ahead, n_feat_out)
Run Code Online (Sandbox Code Playgroud)
生成的数据示例:
X_seq[0]: [[0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4]]
y_seq[0]: [[5],
[6],
[7]]
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
5986 次 |
最近记录: |