ish*_*ido 40 python nlp neural-network deep-learning keras
使用Anaconda Python 2.7 Windows 10.
我正在使用Keras exmaple训练语言模型:
print('Build model...')
model = Sequential()
model.add(GRU(512, return_sequences=True, input_shape=(maxlen, len(chars))))
model.add(Dropout(0.2))
model.add(GRU(512, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(len(chars)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
def sample(a, temperature=1.0):
# helper function to sample an index from a probability array
a = np.log(a) / temperature
a = np.exp(a) / np.sum(np.exp(a))
return np.argmax(np.random.multinomial(1, a, 1))
# train the model, output generated text after each iteration
for iteration in range(1, 3):
print()
print('-' * 50)
print('Iteration', iteration)
model.fit(X, y, batch_size=128, nb_epoch=1)
start_index = random.randint(0, len(text) - maxlen - 1)
for diversity in [0.2, 0.5, 1.0, 1.2]:
print()
print('----- diversity:', diversity)
generated = ''
sentence = text[start_index: start_index + maxlen]
generated += sentence
print('----- Generating with seed: "' + sentence + '"')
sys.stdout.write(generated)
for i in range(400):
x = np.zeros((1, maxlen, len(chars)))
for t, char in enumerate(sentence):
x[0, t, char_indices[char]] = 1.
preds = model.predict(x, verbose=0)[0]
next_index = sample(preds, diversity)
next_char = indices_char[next_index]
generated += next_char
sentence = sentence[1:] + next_char
sys.stdout.write(next_char)
sys.stdout.flush()
print()
Run Code Online (Sandbox Code Playgroud)
根据Keras文档,该model.fit方法返回历史回调,其历史属性包含连续损失和其他指标的列表.
hist = model.fit(X, y, validation_split=0.2)
print(hist.history)
Run Code Online (Sandbox Code Playgroud)
训练我的模型后,如果我运行print(model.history)我得到错误:
AttributeError: 'Sequential' object has no attribute 'history'
Run Code Online (Sandbox Code Playgroud)
使用上面的代码训练模型后,如何返回模型历史记录?
UPDATE
问题在于:
必须首先定义以下内容:
from keras.callbacks import History
history = History()
Run Code Online (Sandbox Code Playgroud)
必须调用回调选项
model.fit(X_train, Y_train, nb_epoch=5, batch_size=16, callbacks=[history])
Run Code Online (Sandbox Code Playgroud)
但现在如果我打印
print(history.History)
Run Code Online (Sandbox Code Playgroud)
它返回
{}
Run Code Online (Sandbox Code Playgroud)
即使我进行了迭代.
小智 24
只是一个例子开始
history = model.fit(X, Y, validation_split=0.33, nb_epoch=150, batch_size=10, verbose=0)
Run Code Online (Sandbox Code Playgroud)
您可以使用
print(history.history.keys())
Run Code Online (Sandbox Code Playgroud)
列出历史记录中的所有数据.
然后,您可以打印验证丢失的历史记录,如下所示:
print(history.history['val_loss'])
Run Code Online (Sandbox Code Playgroud)
ish*_*ido 22
它已经解决了.
损失只能在历史上保存到历史.我正在运行迭代而不是使用内置时代选项中的Keras.
所以我现在没有进行4次迭代
model.fit(......, nb_epoch = 4)
Run Code Online (Sandbox Code Playgroud)
现在它返回每个纪元运行的损失:
print(hist.history)
{'loss': [1.4358016599558268, 1.399221191623641, 1.381293383180471, h1.3758836857303727]}
Run Code Online (Sandbox Code Playgroud)
以下简单代码非常适合我:
seqModel =model.fit(x_train, y_train,
batch_size = batch_size,
epochs = num_epochs,
validation_data = (x_test, y_test),
shuffle = True,
verbose=0, callbacks=[TQDMNotebookCallback()]) #for visualization
Run Code Online (Sandbox Code Playgroud)
确保将拟合函数分配给输出变量。然后,您可以非常轻松地访问该变量
# visualizing losses and accuracy
train_loss = seqModel.history['loss']
val_loss = seqModel.history['val_loss']
train_acc = seqModel.history['acc']
val_acc = seqModel.history['val_acc']
xc = range(num_epochs)
plt.figure()
plt.plot(xc, train_loss)
plt.plot(xc, val_loss)
Run Code Online (Sandbox Code Playgroud)
希望这可以帮助。来源:https : //keras.io/getting-started/faq/#how-can-i-record-the-training-validation-loss-accuracy-at-each-epoch
具有“ acc”,“ loss”等历史记录的字典可用并保存在hist.history变量中。
我还发现您可以使用verbose=2keras 打印出损失:
history = model.fit(X, Y, validation_split=0.33, nb_epoch=150, batch_size=10, verbose=2)
Run Code Online (Sandbox Code Playgroud)
这会打印出漂亮的线条,如下所示:
Epoch 1/1
- 5s - loss: 0.6046 - acc: 0.9999 - val_loss: 0.4403 - val_acc: 0.9999
Run Code Online (Sandbox Code Playgroud)
根据他们的文档:
verbose: 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch.
Run Code Online (Sandbox Code Playgroud)