使用生产者读取大量文件会导致CPU使用率达到100%

ocp*_*000 0 java multithreading file cpu-usage producer-consumer

我写了一个简单的消费者 - 生产者模式来帮助我完成以下任务:

  1. 从包含~500,000个TSV(制表符分隔)文件的目录中读取文件.
  2. 将每个文件操作为数据结构并将其放入阻塞队列.
  3. 使用使用者和查询DB消耗队列.
  4. 比较两个哈希映射,如果存在差异,则将差异打印到文件.

当我运行程序时,即使有5个线程,我的CPU消耗也会猛增到100%.这可能是因为我使用单个制作人来阅读文件吗?

文件示例(制表符分隔)

Column1   Column2   Column3   Column 4   Column5
A         1         *         -          -
B         1         *         -          -
C         1         %         -          -
Run Code Online (Sandbox Code Playgroud)

制片人

public class Producer implements Runnable{
private BlockingQueue<Map<String, Map<String, String>>> m_Queue;
private String m_Directory;

public Producer(BlockingQueue<Map<String, Map<String, String>>> i_Queue, String i_Directory)
{
    m_Queue = i_Queue;
    m_Directory = i_Directory;
}

@Override
public void run()
{
    if (Files.exists(Paths.get(m_Directory)))
    {
        File[] files = new File(m_Directory).listFiles();

        if (files != null)
        {
            for (File file : files)
            {
                Map<String, String> map = new HashMap<>();
                try (BufferedReader reader = new BufferedReader(new FileReader(file)))
                {
                    String line, lastcolumn3 = "", column1 = "", column2 = "", column3 = "";
                    while ((line = reader.readLine()) != null)
                    {
                        //Skip column header
                        if (!Character.isLetter(line.charAt(0)))
                        {
                            String[] splitLine = line.split("\t");

                            column1 = splitLine[0].replace("\"", "");
                            column2 = splitLine[1].replace("\"", "");
                            column3 = splitLine[2].replace("\"", "");

                            if (!lastcolumn3.equals(column3))
                            {
                                map.put(column3, column1);
                                lastcolumn3 = column3;
                            }
                        }
                    }

                    map.put(column3, column1);

                    //Column 1 is always the same per file, it'll be the key. Column2 and Column3 are stored as the value (as a key-value pair)
                    Map<String, Map<String, String>> mapPerFile = new HashMap<>();
                    mapPerFile.put(column2, map);

                    m_Queue.put(mapPerFile);
                }
                catch (IOException | InterruptedException e)
                {
                    System.out.println(file);
                    e.printStackTrace();
                }
            }
        }
    }
}}
Run Code Online (Sandbox Code Playgroud)

消费者

public class Consumer implements Runnable{
private HashMap<String, String> m_DBResults;
private BlockingQueue<Map<String, Map<String, String>>> m_Queue;
private Map<String, Map<String, String>> m_DBResultsPerFile;
private String m_Column1;
private int m_ThreadID;

public Consumer(BlockingQueue<Map<String, Map<String, String>>> i_Queue, int i_ThreadID)
{
    m_Queue = i_Queue;
    m_ThreadID = i_ThreadID;
}

@Override
public void run()
{
    try
    {
        while ((m_DBResultsPerFile = m_Queue.poll()) != null)
        {
            //Column1 is always the same, only need the first entry.
            m_Column1 = m_DBResultsPerFile.keySet().toArray()[0].toString();

            //Queries DB and puts returned data into m_DBResults
            queryDB(m_Column1);

            //Write the difference, if any, per thread into a file.
            writeDifference();
        }
    }
    catch (Exception e)
    {
        e.printStackTrace();
    }
}

private void writeDifference()
{
    MapDifference<String, String> difference = Maps.difference(m_DBResultsPerFile.get(m_Column1), m_DBResults);

    if (difference.entriesOnlyOnLeft().size() > 0 || difference.entriesOnlyOnRight().size() > 0)
    {
        try (BufferedWriter writer = new BufferedWriter(new FileWriter(String.format("thread_%d.tsv", m_ThreadID), true)))
        {
            if (difference.entriesOnlyOnLeft().size() > 0)
            {
                writer.write(String.format("%s\t%s\t", "Missing", m_Column1));
                for (Map.Entry<String, String> entry : difference.entriesOnlyOnLeft().entrySet())
                {
                    writer.write(String.format("[%s,%s]; ", entry.getKey(), entry.getValue()));
                }

                writer.write("\n");
            }
            if (difference.entriesOnlyOnRight().size() > 0)
            {
                writer.write(String.format("%s\t%s\t", "Extra", m_Column1));
                for (Map.Entry<String, String> entry : difference.entriesOnlyOnRight().entrySet())
                {
                    writer.write(String.format("[%s,%s]; ", entry.getKey(), entry.getValue()));
                }

                writer.write("\n");
            }
        }
        catch (IOException e)
        {
            e.printStackTrace();
        }
    }
}}
Run Code Online (Sandbox Code Playgroud)

主要

public static void main(String[]args) {
BlockingQueue<Map<String, Map<String,String>>> queue = new LinkedBlockingQueue <> ();

//Start the reader thread.
threadPool.execute(new Producer(queue, args[0]));

//Create configurable threads.
for (int i = 0; i < 10; i++) {
    threadPool.execute(new Consumer(queue, i + 1));
}

threadPool.shutdown();
System.out.println("INFO: Shutting down threads.");

try {
    threadPool.awaitTermination(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
    System.out.println("INFO: Threadpool terminated successfully.");
} catch (InterruptedException e) {
    e.printStackTrace();
}}
Run Code Online (Sandbox Code Playgroud)

VGR*_*VGR 6

您的CPU使用率很可能是由于:

while ((m_DBResultsPerFile = m_Queue.poll()) != null)
Run Code Online (Sandbox Code Playgroud)

poll方法不会阻止.它会立即返回.所以你每秒执行该循环数百万次.

您应该使用take(),实际上等待元素可用:

while ((m_DBResultsPerFile = m_Queue.take()) != null)
Run Code Online (Sandbox Code Playgroud)

对的BlockingQueue文档很好地概括了这一切,在某种程度上(在我看来)避免任何混乱.

  • `take()`实际上不会返回`null`. (2认同)