Ser*_* S. 3 python neural-network lstm tensorflow
我正在尝试构建一个最简单的LSTM网络.只是希望它预测序列中的下一个值np_input_data.
import tensorflow as tf
from tensorflow.python.ops import rnn_cell
import numpy as np
num_steps = 3
num_units = 1
np_input_data = [np.array([[1.],[2.]]), np.array([[2.],[3.]]), np.array([[3.],[4.]])]
batch_size = 2
graph = tf.Graph()
with graph.as_default():
tf_inputs = [tf.placeholder(tf.float32, [batch_size, 1]) for _ in range(num_steps)]
lstm = rnn_cell.BasicLSTMCell(num_units)
initial_state = state = tf.zeros([batch_size, lstm.state_size])
loss = 0
for i in range(num_steps-1):
output, state = lstm(tf_inputs[i], state)
loss += tf.reduce_mean(tf.square(output - tf_inputs[i+1]))
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
feed_dict={tf_inputs[i]: np_input_data[i] for i in range(len(np_input_data))}
loss = session.run(loss, feed_dict=feed_dict)
print(loss)
Run Code Online (Sandbox Code Playgroud)
口译员返回:
ValueError: Variable BasicLSTMCell/Linear/Matrix already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:
output, state = lstm(tf_inputs[i], state)
Run Code Online (Sandbox Code Playgroud)
我做错了什么?
致电lstm:
for i in range(num_steps-1):
output, state = lstm(tf_inputs[i], state)
Run Code Online (Sandbox Code Playgroud)
将尝试每次迭代创建具有相同名称的变量,除非您另有说明.你可以使用tf.variable_scope
with tf.variable_scope("myrnn") as scope:
for i in range(num_steps-1):
if i > 0:
scope.reuse_variables()
output, state = lstm(tf_inputs[i], state)
Run Code Online (Sandbox Code Playgroud)
第一次迭代创建表示LSTM参数的变量,每次后续迭代(在调用之后reuse_variables)将只按名称在范围内查找它们.
我在TensorFlow v1.0.1中遇到了类似的问题tf.nn.dynamic_rnn.事实证明,如果我必须在训练过程中重新训练或取消并重新开始我的训练过程,那么错误才会出现.基本上图表没有被重置.
简而言之,tf.reset_default_graph()在代码的开头抛出一个它应该有所帮助.至少在使用tf.nn.dynamic_rnn和再培训时.
| 归档时间: |
|
| 查看次数: |
6167 次 |
| 最近记录: |