Pav*_*mar 8 python autoencoder keras
我想根据安德鲁·Ng的讲义来实现稀疏自动编码如图所示这里.它要求通过引入惩罚项(KL发散)在自动编码器层上应用稀疏性约束.我尝试使用此处提供的方向实现此操作,经过一些小的更改.以下是SparseActivityRegularizer类实现的KL分歧和稀疏性惩罚术语,如下所示.
def kl_divergence(p, p_hat):
return (p * K.log(p / p_hat)) + ((1-p) * K.log((1-p) / (1-p_hat)))
class SparseActivityRegularizer(Regularizer):
sparsityBeta = None
def __init__(self, l1=0., l2=0., p=-0.9, sparsityBeta=0.1):
self.p = p
self.sparsityBeta = sparsityBeta
def set_layer(self, layer):
self.layer = layer
def __call__(self, loss):
#p_hat needs to be the average activation of the units in the hidden layer.
p_hat = T.sum(T.mean(self.layer.get_output(True) , axis=0))
loss += self.sparsityBeta * kl_divergence(self.p, p_hat)
return loss
def get_config(self):
return {"name": self.__class__.__name__,
"p": self.l1}
Run Code Online (Sandbox Code Playgroud)
这个模型是这样构建的
X_train = np.load('X_train.npy')
X_test = np.load('X_test.npy')
autoencoder = Sequential()
encoder = containers.Sequential([Dense(250, input_dim=576, init='glorot_uniform', activation='tanh',
activity_regularizer=SparseActivityRegularizer(p=-0.9, sparsityBeta=0.1))])
decoder = containers.Sequential([Dense(576, input_dim=250)])
autoencoder.add(AutoEncoder(encoder=encoder, decoder=decoder, output_reconstruction=True))
autoencoder.layers[0].build()
autoencoder.compile(loss='mse', optimizer=SGD(lr=0.001, momentum=0.9, nesterov=True))
loss = autoencoder.fit(X_train_tmp, X_train_tmp, nb_epoch=200, batch_size=800, verbose=True, show_accuracy=True, validation_split = 0.3)
autoencoder.save_weights('SparseAutoEncoder.h5',overwrite = True)
result = autoencoder.predict(X_test)
Run Code Online (Sandbox Code Playgroud)
当我调用fit()函数时,我得到负损耗值,输出根本不像输入.我想知道我哪里出错了.计算图层平均激活率并使用此自定义稀疏度正则化程序的正确方法是什么?任何形式的帮助将不胜感激.谢谢!
我使用Keras 0.3.1和Python 2.7,因为最新的Keras(1.0.1)版本没有Autoencoder层.
| 归档时间: |
|
| 查看次数: |
3359 次 |
| 最近记录: |