结合Spark Streaming + MLlib

tes*_*ing 5 python apache-spark spark-streaming pyspark apache-spark-mllib

我试图使用随机森林模型来预测一组示例,但似乎我不能使用该模型对示例进行分类.这是pyspark中使用的代码:

sc = SparkContext(appName="App")

model = RandomForest.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={}, impurity='gini', numTrees=150)


ssc = StreamingContext(sc, 1)
lines = ssc.socketTextStream(hostname, int(port))

parsedLines = lines.map(parse)
parsedLines.pprint()

predictions = parsedLines.map(lambda event: model.predict(event.features))
Run Code Online (Sandbox Code Playgroud)

和在集群中编译时返回的错误:

  Error : "It appears that you are attempting to reference SparkContext from a broadcast "
    Exception: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.
Run Code Online (Sandbox Code Playgroud)

有没有办法使用从静态数据生成的模型来预测流式示例?

谢谢你们,我真的很感激!!!!

zer*_*323 4

是的,您可以使用从静态数据生成的模型。您遇到的问题与流根本无关。您根本无法在操作或转换中使用基于 JVM 的模型(请参阅如何从操作或转换中使用 Java/Scala 函数?了解原因的解释)。相反,您应该将predict方法应用于完整的示例,RDD例如使用transformon DStream

from pyspark.mllib.tree import RandomForest
from pyspark.mllib.util import MLUtils
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from operator import attrgetter


sc = SparkContext("local[2]", "foo")
ssc = StreamingContext(sc, 1)

data = MLUtils.loadLibSVMFile(sc, 'data/mllib/sample_libsvm_data.txt')
trainingData, testData = data.randomSplit([0.7, 0.3])

model = RandomForest.trainClassifier(
    trainingData, numClasses=2, nmTrees=3
)

(ssc
    .queueStream([testData])
    # Extract features
    .map(attrgetter("features"))
    # Predict 
    .transform(lambda _, rdd: model.predict(rdd))
    .pprint())

ssc.start()
ssc.awaitTerminationOrTimeout(10)
Run Code Online (Sandbox Code Playgroud)