8 mnist deep-learning tensorflow
我在ubuntu 14.04上安装了Tensorflow.我完成了MNIST For ML Beginners教程.我明白了.
也不,我尝试使用自己的数据.我有数据训练为T [1000] [10].标签是L [2],1或0.
我如何访问我的数据mnist.train.images
?
在 input_data.py 中,这两个函数完成主要工作。
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
Run Code Online (Sandbox Code Playgroud)
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
Run Code Online (Sandbox Code Playgroud)
根据您的数据集和位置,您可以调用:
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
Run Code Online (Sandbox Code Playgroud)
请参阅https://github.com/nlintz/TensorFlow-Tutorials/blob/master/input_data.py获取完整源代码。
归档时间: |
|
查看次数: |
3236 次 |
最近记录: |