Pri*_*sie 8 python scikit-learn
我认为函数TfidfVectorizer没有正确计算IDF因子.例如,使用sklearn.feature_extraction.text.TfidfVectorizer从tf-idf要素权重复制代码:
from sklearn.feature_extraction.text import TfidfVectorizer
corpus = ["This is very strange",
"This is very nice"]
vectorizer = TfidfVectorizer(
use_idf=True, # utiliza o idf como peso, fazendo tf*idf
norm=None, # normaliza os vetores
smooth_idf=False, #soma 1 ao N e ao ni => idf = ln(N+1 / ni+1)
sublinear_tf=False, #tf = 1+ln(tf)
binary=False,
min_df=1, max_df=1.0, max_features=None,
strip_accents='unicode', # retira os acentos
ngram_range=(1,1), preprocessor=None, stop_words=None, tokenizer=None, vocabulary=None
)
X = vectorizer.fit_transform(corpus)
idf = vectorizer.idf_
print dict(zip(vectorizer.get_feature_names(), idf))
Run Code Online (Sandbox Code Playgroud)
输出是:
{u'is': 1.0,
u'nice': 1.6931471805599454,
u'strange': 1.6931471805599454,
u'this': 1.0,
u'very': 1.0}`
Run Code Online (Sandbox Code Playgroud)
但应该是:
{u'is': 0.0,
u'nice': 0.6931471805599454,
u'strange': 0.6931471805599454,
u'this': 0.0,
u'very': 0.0}
Run Code Online (Sandbox Code Playgroud)
不是吗?我究竟做错了什么?
根据http://www.tfidf.com/,IDF的计算是:
IDF(t) = log_e(Total number of documents / Number of documents with term t in it)
Run Code Online (Sandbox Code Playgroud)
因此,当术语"this","is"和"very"出现在两个句子中时,IDF = log_e(2/2)= 0.
"奇怪"和"好"这两个词只出现在两个文件中的一个中,因此log_e(2/1)= 0,69314.
在sklearn implimentation中您可能不会发生两件事:
TfidfTransformer有smooth_idf=True作为默认PARAM所以它正在使用:
idf = log( 1 + samples/documents) + 1
Run Code Online (Sandbox Code Playgroud)
这是源头:
编辑:你可以TfidfVectorizer像这样继承标准类:
import scipy.sparse as sp
import numpy as np
from sklearn.feature_extraction.text import (TfidfVectorizer,
_document_frequency)
class PriscillasTfidfVectorizer(TfidfVectorizer):
def fit(self, X, y=None):
"""Learn the idf vector (global term weights)
Parameters
----------
X : sparse matrix, [n_samples, n_features]
a matrix of term/token counts
"""
if not sp.issparse(X):
X = sp.csc_matrix(X)
if self.use_idf:
n_samples, n_features = X.shape
df = _document_frequency(X)
# perform idf smoothing if required
df += int(self.smooth_idf)
n_samples += int(self.smooth_idf)
# log+1 instead of log makes sure terms with zero idf don't get
# suppressed entirely.
####### + 1 is commented out ##########################
idf = np.log(float(n_samples) / df) #+ 1.0
#######################################################
self._idf_diag = sp.spdiags(idf,
diags=0, m=n_features, n=n_features)
return self
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
9087 次 |
| 最近记录: |