我一直在玩一个能够吸收CSV数据的函数,并使用pandas to_dict函数作为实现将数据转换为JSON的最终目标之一.问题是它正在修改数字(例如1.6变为1.6000000000000001).我并不担心准确性的损失,但是因为用户会看到数字的变化,所以看起来......业余.
我知道这是在此之前已经出现的东西,但它是2年前,并没有真正得到很好的回答,而且我有一个额外的复杂性 - 我希望转换为字典的数据框可以是任何组合的数据类型.因此,先前解决方案的问题是:
所以,从高层次来看,我的问题是:
有没有更好的方法来确保数字不被修改,但保存在数值数据类型中?这是一个改变我首先导入CSV数据的方式的问题吗?当然有一个我忽略的简单解决方案?
这是一个简单的脚本,将重现此错误:
import pandas as pd
import sys
if sys.version_info[0] < 3:
from StringIO import StringIO
else:
from io import StringIO
CSV_Data = "Index,Column_1,Column_2,Column_3,Column_4,Column_5,Column_6,Column_7,Column_8\nindex_1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8\nindex_2,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8\nindex_3,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8\nindex_4,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8"
input_data = StringIO(CSV_Data)
df = pd.DataFrame.from_csv(path = input_data, header = 0, sep=',', index_col=0, encoding='utf-8')
print(df.to_dict(orient = 'records'))
Run Code Online (Sandbox Code Playgroud)
您可以使用pd.io.json.dumpspandas 对象来处理嵌套字典。
让我们创建一个summary包含数据帧记录和自定义指标的字典。
In [137]: summary = {'df': df.to_dict(orient = 'records'), 'df_metric': df.sum() / df.min()}
In [138]: summary['df_metric']
Out[138]:
Column_1 9.454545
Column_2 9.000000
Column_3 8.615385
Column_4 8.285714
Column_5 8.000000
Column_6 7.750000
Column_7 7.529412
Column_8 7.333333
dtype: float64
In [139]: pd.io.json.dumps(summary)
Out[139]: '{"df":[{"Column_7":1.7,"Column_6":1.6,"Column_5":1.5,"Column_4":1.4,"Column_3":1.3,"Column_2":1.2,"Column_1":1.1,"Column_8":1.8},{"Column_7":2.7,"Column_6":2.6,"Column_5":2.5,"Column_4":2.4,"Column_3":2.3,"Column_2":2.2,"Column_1":2.1,"Column_8":2.8},{"Column_7":3.7,"Column_6":3.6,"Column_5":3.5,"Column_4":3.4,"Column_3":3.3,"Column_2":3.2,"Column_1":3.1,"Column_8":3.8},{"Column_7":4.7,"Column_6":4.6,"Column_5":4.5,"Column_4":4.4,"Column_3":4.3,"Column_2":4.2,"Column_1":4.1,"Column_8":4.8}],"df_metric":{"Column_1":9.4545454545,"Column_2":9.0,"Column_3":8.6153846154,"Column_4":8.2857142857,"Column_5":8.0,"Column_6":7.75,"Column_7":7.5294117647,"Column_8":7.3333333333}}'
Run Code Online (Sandbox Code Playgroud)
使用,double_precision更改双精度数的最大数字精度。注意。df_metric价值观。
In [140]: pd.io.json.dumps(summary, double_precision=2)
Out[140]: '{"df":[{"Column_7":1.7,"Column_6":1.6,"Column_5":1.5,"Column_4":1.4,"Column_3":1.3,"Column_2":1.2,"Column_1":1.1,"Column_8":1.8},{"Column_7":2.7,"Column_6":2.6,"Column_5":2.5,"Column_4":2.4,"Column_3":2.3,"Column_2":2.2,"Column_1":2.1,"Column_8":2.8},{"Column_7":3.7,"Column_6":3.6,"Column_5":3.5,"Column_4":3.4,"Column_3":3.3,"Column_2":3.2,"Column_1":3.1,"Column_8":3.8},{"Column_7":4.7,"Column_6":4.6,"Column_5":4.5,"Column_4":4.4,"Column_3":4.3,"Column_2":4.2,"Column_1":4.1,"Column_8":4.8}],"df_metric":{"Column_1":9.45,"Column_2":9.0,"Column_3":8.62,"Column_4":8.29,"Column_5":8.0,"Column_6":7.75,"Column_7":7.53,"Column_8":7.33}}'
Run Code Online (Sandbox Code Playgroud)
您可以使用orient='records/index/..'来处理 dataframe -> to_json 构造。
In [144]: pd.io.json.dumps(summary, orient='records')
Out[144]: '{"df":[{"Column_7":1.7,"Column_6":1.6,"Column_5":1.5,"Column_4":1.4,"Column_3":1.3,"Column_2":1.2,"Column_1":1.1,"Column_8":1.8},{"Column_7":2.7,"Column_6":2.6,"Column_5":2.5,"Column_4":2.4,"Column_3":2.3,"Column_2":2.2,"Column_1":2.1,"Column_8":2.8},{"Column_7":3.7,"Column_6":3.6,"Column_5":3.5,"Column_4":3.4,"Column_3":3.3,"Column_2":3.2,"Column_1":3.1,"Column_8":3.8},{"Column_7":4.7,"Column_6":4.6,"Column_5":4.5,"Column_4":4.4,"Column_3":4.3,"Column_2":4.2,"Column_1":4.1,"Column_8":4.8}],"df_metric":[9.4545454545,9.0,8.6153846154,8.2857142857,8.0,7.75,7.5294117647,7.3333333333]}'
Run Code Online (Sandbox Code Playgroud)
本质上,pd.io.json.dumps- 将任意对象递归转换为JSON,内部使用ultrajson
| 归档时间: |
|
| 查看次数: |
826 次 |
| 最近记录: |