San*_*der 15 c++ python export deep-learning tensorflow
究竟应该如何导出python模型以便在c ++中使用?
我正在尝试做类似于本教程的内容:https: //www.tensorflow.org/versions/r0.8/tutorials/image_recognition/index.html
我试图在c ++ API中导入我自己的TF模型,而不是从一开始.我调整了输入大小和路径,但奇怪的错误不断出现.我花了一整天阅读堆栈溢出和其他论坛但无济于事.
我尝试了两种导出图形的方法.
方法1:元图.
...loading inputs, setting up the model, etc....
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(num_steps):
x_batch, y_batch = batch(50)
if i%10 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:x_batch, y_: y_batch, keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: x_batch, y_: y_batch, keep_prob: 0.5})
print("test accuracy %g"%accuracy.eval(feed_dict={
x: features_test, y_: labels_test, keep_prob: 1.0}))
saver = tf.train.Saver(tf.all_variables())
checkpoint =
'/home/sander/tensorflow/tensorflow/examples/cat_face/data/model.ckpt'
saver.save(sess, checkpoint)
tf.train.export_meta_graph(filename=
'/home/sander/tensorflow/tensorflow/examples/cat_face/data/cat_graph.pb',
meta_info_def=None,
graph_def=sess.graph_def,
saver_def=saver.restore(sess, checkpoint),
collection_list=None, as_text=False)
Run Code Online (Sandbox Code Playgroud)
尝试运行该程序时,方法1会产生以下错误:
[libprotobuf ERROR
google/protobuf/src/google/protobuf/wire_format_lite.cc:532] String field
'tensorflow.NodeDef.op' contains invalid UTF-8 data when parsing a protocol
buffer. Use the 'bytes' type if you intend to send raw bytes.
E tensorflow/examples/cat_face/main.cc:281] Not found: Failed to load
compute graph at 'tensorflow/examples/cat_face/data/cat_graph.pb'
Run Code Online (Sandbox Code Playgroud)
我还尝试了另一种导出图形的方法:
方法2:write_graph:
tf.train.write_graph(sess.graph_def,
'/home/sander/tensorflow/tensorflow/examples/cat_face/data/',
'cat_graph.pb', as_text=False)
Run Code Online (Sandbox Code Playgroud)
这个版本实际上似乎加载了一些东西,但是我得到一个关于未被初始化的变量的错误:
Running model failed: Failed precondition: Attempting to use uninitialized
value weight1
[[Node: weight1/read = Identity[T=DT_FLOAT, _class=["loc:@weight1"],
_device="/job:localhost/replica:0/task:0/cpu:0"](weight1)]]
Run Code Online (Sandbox Code Playgroud)
首先,您需要使用以下命令将定义图形化到文件中
with tf.Session() as sess:
//Build network here
tf.train.write_graph(sess.graph.as_graph_def(), "C:\\output\\", "mymodel.pb")
Run Code Online (Sandbox Code Playgroud)
然后,使用 saver 保存模型
saver = tf.train.Saver(tf.global_variables())
saver.save(sess, "C:\\output\\mymodel.ckpt")
Run Code Online (Sandbox Code Playgroud)
然后,您的输出将有 2 个文件:mymodel.ckpt、mymodel.pb
从此处下载 freeze_graph.py并在 C:\output\ 中运行以下命令。如果输出节点名称与您不同,请更改它。
python freeze_graph.py --input_graph mymodel.pb --input_checkpoint mymodel.ckpt --output_node_names softmax/Reshape_1 --output_graph mymodelforc.pb
您可以直接从 C 使用 mymodelforc.pb。
您可以使用以下 C 代码来加载 proto 文件
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/cc/ops/image_ops.h"
Session* session;
NewSession(SessionOptions(), &session);
GraphDef graph_def;
ReadBinaryProto(Env::Default(), "C:\\output\\mymodelforc.pb", &graph_def);
session->Create(graph_def);
Run Code Online (Sandbox Code Playgroud)
现在您可以使用会话进行推理。
您可以按如下方式应用推理参数:
// Same dimension and type as input of your network
tensorflow::Tensor input_tensor(tensorflow::DT_FLOAT, tensorflow::TensorShape({ 1, height, width, channel }));
std::vector<tensorflow::Tensor> finalOutput;
// Fill input tensor with your input data
std::string InputName = "input"; // Your input placeholder's name
std::string OutputName = "softmax/Reshape_1"; // Your output placeholder's name
session->Run({ { InputName, input_tensor } }, { OutputName }, {}, &finalOutput);
// finalOutput will contain the inference output that you search for
Run Code Online (Sandbox Code Playgroud)