Hon*_*zaB 15 python machine-learning pca scikit-learn
我可以通过以下代码在scikit中执行PCA:X_train有279180行和104列.
from sklearn.decomposition import PCA
pca = PCA(n_components=30)
X_train_pca = pca.fit_transform(X_train)
Run Code Online (Sandbox Code Playgroud)
现在,当我想将特征向量投影到特征空间时,我必须做到以下几点:
""" Projection """
comp = pca.components_ #30x104
com_tr = np.transpose(pca.components_) #104x30
proj = np.dot(X_train,com_tr) #279180x104 * 104x30 = 297180x30
Run Code Online (Sandbox Code Playgroud)
但我对此步骤犹豫不决,因为Scikit 文档说:
components_:array,[n_components,n_features]
特征空间中的主轴,表示数据中最大方差的方向.
在我看来,它已经被预测,但是当我检查源代码时,它只返回特征向量.
如何投影它的正确方法是什么?
最终,我的目标是计算重建的MSE.
""" Reconstruct """
recon = np.dot(proj,comp) #297180x30 * 30x104 = 279180x104
""" MSE Error """
print "MSE = %.6G" %(np.mean((X_train - recon)**2))
Run Code Online (Sandbox Code Playgroud)
eic*_*erg 27
你可以做
proj = pca.inverse_transform(X_train_pca)
Run Code Online (Sandbox Code Playgroud)
这样您就不必担心如何进行乘法运算了.
您获得的pca.fit_transform或者pca.transform通常称为每个样本的"加载"的含义,意味着您需要使用components_(特征空间中的主轴)的线性组合来最好地描述每个组件的多少.
您瞄准的投影返回原始信号空间.这意味着您需要使用组件和负载返回信号空间.
因此,这里有三个消除歧义的步骤.在这里,您将逐步了解使用PCA对象可以执行的操作以及实际计算方法:
pca.fit 估计组件(在中心Xtrain上使用SVD):
from sklearn.decomposition import PCA
import numpy as np
from numpy.testing import assert_array_almost_equal
#Should this variable be X_train instead of Xtrain?
X_train = np.random.randn(100, 50)
pca = PCA(n_components=30)
pca.fit(X_train)
U, S, VT = np.linalg.svd(X_train - X_train.mean(0))
assert_array_almost_equal(VT[:30], pca.components_)
Run Code Online (Sandbox Code Playgroud)pca.transform 如您所述计算负载
X_train_pca = pca.transform(X_train)
X_train_pca2 = (X_train - pca.mean_).dot(pca.components_.T)
assert_array_almost_equal(X_train_pca, X_train_pca2)
Run Code Online (Sandbox Code Playgroud)pca.inverse_transform 获取您感兴趣的信号空间中的组件的投影
X_projected = pca.inverse_transform(X_train_pca)
X_projected2 = X_train_pca.dot(pca.components_) + pca.mean_
assert_array_almost_equal(X_projected, X_projected2)
Run Code Online (Sandbox Code Playgroud)您现在可以评估投影损失
loss = ((X_train - X_projected) ** 2).mean()
Run Code Online (Sandbox Code Playgroud)
添加@eickenberg 的帖子,以下是如何对数字图像进行 PCA 重建:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn import decomposition
n_components = 10
image_shape = (8, 8)
digits = load_digits()
digits = digits.data
n_samples, n_features = digits.shape
estimator = decomposition.PCA(n_components=n_components, svd_solver='randomized', whiten=True)
digits_recons = estimator.inverse_transform(estimator.fit_transform(digits))
# show 5 randomly chosen digits and their PCA reconstructions with 10 dominant eigenvectors
indices = np.random.choice(n_samples, 5, replace=False)
plt.figure(figsize=(5,2))
for i in range(len(indices)):
plt.subplot(1,5,i+1), plt.imshow(np.reshape(digits[indices[i],:], image_shape)), plt.axis('off')
plt.suptitle('Original', size=25)
plt.show()
plt.figure(figsize=(5,2))
for i in range(len(indices)):
plt.subplot(1,5,i+1), plt.imshow(np.reshape(digits_recons[indices[i],:], image_shape)), plt.axis('off')
plt.suptitle('PCA reconstructed'.format(n_components), size=25)
plt.show()
Run Code Online (Sandbox Code Playgroud)