spi*_*iky 5 scala machine-learning random-forest apache-spark apache-spark-mllib
我试图使用SCALA中的随机森林分类器模型使用5倍交叉验证来找到准确度.但是我在运行时遇到以下错误:
java.lang.IllegalArgumentException:为RandomForestClassifier提供了带有无效标签列标签的输入,没有指定类的数量.请参见StringIndexer.
在行---> val cvModel = cv.fit(trainingData)获得上述错误
我用于使用随机森林进行数据集交叉验证的代码如下:
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}
import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
val data = sc.textFile("exprogram/dataset.txt")
val parsedData = data.map { line =>
val parts = line.split(',')
LabeledPoint(parts(41).toDouble,
Vectors.dense(parts(0).split(',').map(_.toDouble)))
}
val splits = parsedData.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0)
val test = splits(1)
val trainingData = training.toDF()
val testData = test.toDF()
val nFolds: Int = 5
val NumTrees: Int = 5
val rf = new
RandomForestClassifier()
.setLabelCol("label")
.setFeaturesCol("features")
.setNumTrees(NumTrees)
val pipeline = new Pipeline()
.setStages(Array(rf))
val paramGrid = new ParamGridBuilder()
.build()
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("precision")
val cv = new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(evaluator)
.setEstimatorParamMaps(paramGrid)
.setNumFolds(nFolds)
val cvModel = cv.fit(trainingData)
val results = cvModel.transform(testData)
.select("label","prediction").collect
val numCorrectPredictions = results.map(row =>
if (row.getDouble(0) == row.getDouble(1)) 1 else 0).foldLeft(0)(_ + _)
val accuracy = 1.0D * numCorrectPredictions / results.size
println("Test set accuracy: %.3f".format(accuracy))
Run Code Online (Sandbox Code Playgroud)
任何人都可以解释上面代码中的错误.
RandomForestClassifier
与许多其他ML算法一样,要求在标签列上设置特定元数据,并将值标记为来自[0,1,2 ...,#类)的整数值,表示为双精度.典型地,这由上游处理Transformers
等StringIndexer
.由于您手动转换标签元数据字段未设置且分类器无法确认是否满足这些要求.
val df = Seq(
(0.0, Vectors.dense(1, 0, 0, 0)),
(1.0, Vectors.dense(0, 1, 0, 0)),
(2.0, Vectors.dense(0, 0, 1, 0)),
(2.0, Vectors.dense(0, 0, 0, 1))
).toDF("label", "features")
val rf = new RandomForestClassifier()
.setFeaturesCol("features")
.setNumTrees(5)
rf.setLabelCol("label").fit(df)
// java.lang.IllegalArgumentException: RandomForestClassifier was given input ...
Run Code Online (Sandbox Code Playgroud)
您可以使用以下命令重新编码标签列StringIndexer
:
import org.apache.spark.ml.feature.StringIndexer
val indexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("label_idx")
.fit(df)
rf.setLabelCol("label_idx").fit(indexer.transform(df))
Run Code Online (Sandbox Code Playgroud)
val meta = NominalAttribute
.defaultAttr
.withName("label")
.withValues("0.0", "1.0", "2.0")
.toMetadata
rf.setLabelCol("label_meta").fit(
df.withColumn("label_meta", $"label".as("", meta))
)
Run Code Online (Sandbox Code Playgroud)
注意:
使用的标签StringIndexer
取决于频率而非值:
indexer.labels
// Array[String] = Array(2.0, 0.0, 1.0)
Run Code Online (Sandbox Code Playgroud)
PySpark:
在Python中,元数据字段可以直接在模式上设置:
from pyspark.sql.types import StructField, DoubleType
StructField(
"label", DoubleType(), False,
{"ml_attr": {
"name": "label",
"type": "nominal",
"vals": ["0.0", "1.0", "2.0"]
}}
)
Run Code Online (Sandbox Code Playgroud)