LSTM遵循均值池

mos*_*aab 8 machine-learning neural-network deep-learning keras recurrent-neural-network

我正在使用Keras 1.0.我的问题与此问题相同(如何在Keras中实现Mean Pooling层),但对我来说这里的答案似乎不够.

我想实现这个网络: 在此输入图像描述

以下代码不起作用:

sequence = Input(shape=(max_sent_len,), dtype='int32')
embedded = Embedding(vocab_size, word_embedding_size)(sequence)
lstm = LSTM(hidden_state_size, activation='sigmoid', inner_activation='hard_sigmoid', return_sequences=True)(embedded)
pool = AveragePooling1D()(lstm)
output = Dense(1, activation='sigmoid')(pool)
Run Code Online (Sandbox Code Playgroud)

如果我没有设置return_sequences=True,我打电话时会收到此错误AveragePooling1D():

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/PATH/keras/engine/topology.py", line 462, in __call__
    self.assert_input_compatibility(x)
  File "/PATH/keras/engine/topology.py", line 382, in assert_input_compatibility
    str(K.ndim(x)))
Exception: ('Input 0 is incompatible with layer averagepooling1d_6: expected ndim=3', ' found ndim=2')
Run Code Online (Sandbox Code Playgroud)

否则,我打电话时会收到此错误Dense():

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/PATH/keras/engine/topology.py", line 456, in __call__
    self.build(input_shapes[0])
  File "/fs/clip-arqat/mossaab/trec/liveqa/cmu/venv/lib/python2.7/site-packages/keras/layers/core.py", line 512, in build
    assert len(input_shape) == 2
AssertionError
Run Code Online (Sandbox Code Playgroud)

小智 8

我只是尝试实现与原始海报相同的模型,我正在使用Keras 2.0.3. 当我使用 LSTM 后的平均池化工作时GlobalAveragePooling1D,只需确保return_sequences=True在 LSTM 层中即可。试一试!


mos*_*aab 4

添加TimeDistributed(Dense(1))帮助:

sequence = Input(shape=(max_sent_len,), dtype='int32')
embedded = Embedding(vocab_size, word_embedding_size)(sequence)
lstm = LSTM(hidden_state_size, activation='sigmoid', inner_activation='hard_sigmoid', return_sequences=True)(embedded)
distributed = TimeDistributed(Dense(1))(lstm)
pool = AveragePooling1D()(distributed)
output = Dense(1, activation='sigmoid')(pool)
Run Code Online (Sandbox Code Playgroud)