Spark:以编程方式在scala中创建数据框架构

Stu*_*art 11 schema scala dataframe apache-spark

我有一个小的数据集,它将是Spark工作的结果.我正在考虑在作业结束时将此数据集转换为数据框以方便,但却难以正确定义架构.问题是下面的最后一个字段(topValues); 它是一个元组的ArrayBuffer - 键和计数.

  val innerSchema =
    StructType(
      Array(
        StructField("value", StringType),
        StructField("count", LongType)
      )
    )
  val outputSchema =
    StructType(
      Array(
        StructField("name", StringType, nullable=false),
        StructField("index", IntegerType, nullable=false),
        StructField("count", LongType, nullable=false),
        StructField("empties", LongType, nullable=false),
        StructField("nulls", LongType, nullable=false),
        StructField("uniqueValues", LongType, nullable=false),
        StructField("mean", DoubleType),
        StructField("min", DoubleType),
        StructField("max", DoubleType),
        StructField("topValues", innerSchema)
      )
    )

  val result = stats.columnStats.map{ c =>
    Row(c._2.name, c._1, c._2.count, c._2.empties, c._2.nulls, c._2.uniqueValues, c._2.mean, c._2.min, c._2.max, c._2.topValues.topN)
  }

  val rdd = sc.parallelize(result.toSeq)

  val outputDf = sqlContext.createDataFrame(rdd, outputSchema)

  outputDf.show()
Run Code Online (Sandbox Code Playgroud)

我得到的错误是MatchError: scala.MatchError: ArrayBuffer((10,2), (20,3), (8,1)) (of class scala.collection.mutable.ArrayBuffer)

当我调试和检查我的对象时,我看到了这个:

rdd: ParallelCollectionRDD[2]
rdd.data: "ArrayBuffer" size = 2
rdd.data(0): [age,2,6,0,0,3,14.666666666666666,8.0,20.0,ArrayBuffer((10,2), (20,3), (8,1))]
rdd.data(1): [gender,3,6,0,0,2,0.0,0.0,0.0,ArrayBuffer((M,4), (F,2))]
Run Code Online (Sandbox Code Playgroud)

在我看来,我已经准确地在我的innerSchema中描述了元组的ArrayBuffer,但Spark不同意.

知道我应该如何定义架构吗?

Dav*_*fin 14

val rdd = sc.parallelize(Array(Row(ArrayBuffer(1,2,3,4))))
val df = sqlContext.createDataFrame(
  rdd,
  StructType(Seq(StructField("arr", ArrayType(IntegerType, false), false)
)

df.printSchema
root
 |-- arr: array (nullable = false)
 |    |-- element: integer (containsNull = false)

df.show
+------------+
|         arr|
+------------+
|[1, 2, 3, 4]|
+------------+
Run Code Online (Sandbox Code Playgroud)


Stu*_*art 7

正如David指出的那样,我需要使用ArrayType.Spark很满意这个:

  val outputSchema =
    StructType(
      Array(
        StructField("name", StringType, nullable=false),
        StructField("index", IntegerType, nullable=false),
        StructField("count", LongType, nullable=false),
        StructField("empties", LongType, nullable=false),
        StructField("nulls", LongType, nullable=false),
        StructField("uniqueValues", LongType, nullable=false),
        StructField("mean", DoubleType),
        StructField("min", DoubleType),
        StructField("max", DoubleType),
        StructField("topValues", ArrayType(StructType(Array(
          StructField("value", StringType),
          StructField("count", LongType)
        ))))
      )
    )
Run Code Online (Sandbox Code Playgroud)