请在这里找到我正在使用的长数据的一小部分
dput(dt)
structure(list(id = 1:15, pnum = c(4298390L, 4298390L, 4298390L,
4298558L, 4298558L, 4298559L, 4298559L, 4299026L, 4299026L, 4299026L,
4299026L, 4300436L, 4300436L, 4303566L, 4303566L), invid = c(15L,
101L, 102L, 103L, 104L, 103L, 104L, 106L, 107L, 108L, 109L, 87L,
111L, 2L, 60L), fid = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 2L,
4L, 4L, 4L, 4L, 3L, 3L, 2L, 2L), .Label = c("CORN", "DowCor",
"KIM", "Texas"), class = "factor"), dom_kn = c(1L, 0L, 0L, 0L,
1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L), prim_kn = c(1L,
0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L), pat_kn = c(1L,
0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L), net_kn = c(1L,
0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L), age_kn = c(1L,
0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L), legclaims = c(5L,
0L, 0L, 2L, 5L, 2L, 5L, 0L, 0L, 0L, 0L, 5L, 0L, 5L, 2L), n_inv = c(3L,
3L, 3L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L)), .Names = c("id",
"pnum", "invid", "fid", "dom_kn", "prim_kn", "pat_kn", "net_kn",
"age_kn", "legclaims", "n_inv"), class = "data.frame", row.names = c(NA,
-15L))
Run Code Online (Sandbox Code Playgroud)
我希望在5个不同的列中应用比调整更大的调整.
在每个pnum(专利)中,有多个invid(发明者).我要比较的列的值dom_kn,prim_kn,pat_kn,net_kn,并age_kn与同其他行每行,到了值pnum.比较简单>,如果值确实大于另一个,则应归因于一个"点".
因此,对于第一行pnum == 4298390和invid == 15,你可以看到在五列的值都是1,而对于值invid == 101 | 102均为零.这意味着如果我们将第一行中的每个值单独比较(大于?)第二行和第三行中的每个单元格,则总和将为10个点.在每个比较中,第一行中的值更大,并且有10个比较.比较的数量是设计的5 * (n_inv -1).我正在寻找第1行的结果应该是10 / 10 = 1.
对于pnum == 4298558列而言net_kn,age_kn两行中的值均为1(对于invid103和104),因此每个应该得到0.5分(如果有三个发明者的值为1,则每个人应该得到0.33分).同样的道理pnum == 4298558.
对于下一个,pnum == 4299026所有值都为零,因此每次比较都应该得到0分.
因此,请注意区别:有三种不同的二元比较
1 > 0 --> assign 1
1 = 1 --> assign 1 / number of positive values in column subset
0 = 0 --> assign 0
Run Code Online (Sandbox Code Playgroud)
所需结果result data.table中带有值
的额外列1 0 0 0.2 0.8 0.2 0.8 0 0 0 0 1 0 0.8 0.2
有关如何有效计算这一点的任何建议?
谢谢!
vars = grep('_kn', names(dt), value = T)
# all you need to do is simply assign the correct weight and sum the numbers up
dt[, res := 0]
for (var in vars)
dt[, res := res + get(var) / .N, by = c('pnum', var)]
# normalize
dt[, res := res/sum(res), by = pnum]
# id pnum invid fid dom_kn prim_kn pat_kn net_kn age_kn legclaims n_inv res
# 1: 1 4298390 15 CORN 1 1 1 1 1 5 3 1.0
# 2: 2 4298390 101 CORN 0 0 0 0 0 0 3 0.0
# 3: 3 4298390 102 CORN 0 0 0 0 0 0 3 0.0
# 4: 4 4298558 103 DowCor 0 0 0 1 1 2 2 0.2
# 5: 5 4298558 104 DowCor 1 1 1 1 1 5 2 0.8
# 6: 6 4298559 103 DowCor 0 0 0 1 1 2 2 0.2
# 7: 7 4298559 104 DowCor 1 1 1 1 1 5 2 0.8
# 8: 8 4299026 106 Texas 0 0 0 0 0 0 4 NaN
# 9: 9 4299026 107 Texas 0 0 0 0 0 0 4 NaN
#10: 10 4299026 108 Texas 0 0 0 0 0 0 4 NaN
#11: 11 4299026 109 Texas 0 0 0 0 0 0 4 NaN
#12: 12 4300436 87 KIM 1 1 1 1 1 5 2 1.0
#13: 13 4300436 111 KIM 0 0 0 0 0 0 2 0.0
#14: 14 4303566 2 DowCor 1 1 1 1 1 5 2 0.8
#15: 15 4303566 60 DowCor 1 0 0 1 0 2 2 0.2
Run Code Online (Sandbox Code Playgroud)
处理上述NaN情况(可以说是正确的答案)留待读者阅读.