ins*_*ity 19 linux linux-device-driver linux-kernel cpuset
从用户空间我们可以使用cpuset实际隔离系统中的特定核心,并只执行一个特定的核心进程.
我正在尝试使用内核模块做同样的事情.所以我希望模块在一个孤立的核心中执行.换句话说:我如何cpuset在内核模块中使用?*
在我的内核模块中使用linux/cpuset.h不起作用.所以,我有一个这样的模块:
#include <linux/module.h>
#include <linux/cpuset.h>
...
#ifdef CONFIG_CPUSETS
printk(KERN_INFO, "cpusets is enabled!");
#endif
cpuset_init(); // this function is declared in cpuset.h
...
Run Code Online (Sandbox Code Playgroud)
尝试加载此模块时,我收到dmesg以下消息cpusets is enabled!.但我也收到了这条消息Unknown symbol cpu_init (err 0).
类似地,我尝试使用sched_setaffinityfrom linux/sched.h来将所有正在运行的procceses移动到特定的核心,然后将我的模块运行到一个隔离的核心.我得到了相同的错误消息:Unknown symbol sched_setaffinity (err 0).我想我得到了"未知符号",因为这些函数EXPORT_SYMBOL在内核中没有.所以我去尝试调用sys_sched_setaffinity 系统调用(基于这个问题),但又得到了这个消息:Unknown symbol sys_sched_setaffinity (err 0)!
此外,我不是在寻找一个使用的解决方案isolcpus,它在启动时设置.我想加载模块,然后发生隔离.
Har*_*rry 11
所以我希望模块在一个孤立的核心中执行.
和
实际上是在我们的系统中隔离一个特定的核心,并只对该核心执行一个特定的过程
这是一个使用内核3.16在Debian盒子上编译和测试的工作源代码.我将描述如何首先加载和卸载以及传递的参数意味着什么.
所有来源都可以在github上找到...
https://github.com/harryjackson/doc/tree/master/linux/kernel/toy/toy
构建并加载模块......
make
insmod toy param_cpu_id=2
Run Code Online (Sandbox Code Playgroud)
卸载模块使用
rmmod toy
Run Code Online (Sandbox Code Playgroud)
我没有使用modprobe,因为它需要一些配置等.我们传递给toy内核模块的参数是我们想要隔离的CPU.除非它们在该CPU上执行,否则所有被调用的设备操作都不会运行.
加载模块后,您可以在此处找到它
/dev/toy
Run Code Online (Sandbox Code Playgroud)
简单的操作就像
cat /dev/toy
Run Code Online (Sandbox Code Playgroud)
创建内核模块捕获的事件并生成一些输出.您可以使用查看输出dmesg.
源代码...
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Harry");
MODULE_DESCRIPTION("toy kernel module");
MODULE_VERSION("0.1");
#define DEVICE_NAME "toy"
#define CLASS_NAME "toy"
static int param_cpu_id;
module_param(param_cpu_id , int, (S_IRUSR | S_IRGRP | S_IROTH));
MODULE_PARM_DESC(param_cpu_id, "CPU ID that operations run on");
//static void bar(void *arg);
//static void foo(void *cpu);
static int toy_open( struct inode *inodep, struct file *fp);
static ssize_t toy_read( struct file *fp , char *buffer, size_t len, loff_t * offset);
static ssize_t toy_write( struct file *fp , const char *buffer, size_t len, loff_t *);
static int toy_release(struct inode *inodep, struct file *fp);
static struct file_operations toy_fops = {
.owner = THIS_MODULE,
.open = toy_open,
.read = toy_read,
.write = toy_write,
.release = toy_release,
};
static struct miscdevice toy_device = {
.minor = MISC_DYNAMIC_MINOR,
.name = "toy",
.fops = &toy_fops
};
//static int CPU_IDS[64] = {0};
static int toy_open(struct inode *inodep, struct file *filep) {
int this_cpu = get_cpu();
printk(KERN_INFO "open: called on CPU:%d\n", this_cpu);
if(this_cpu == param_cpu_id) {
printk(KERN_INFO "open: is on requested CPU: %d\n", smp_processor_id());
}
else {
printk(KERN_INFO "open: not on requested CPU:%d\n", smp_processor_id());
}
put_cpu();
return 0;
}
static ssize_t toy_read(struct file *filep, char *buffer, size_t len, loff_t *offset){
int this_cpu = get_cpu();
printk(KERN_INFO "read: called on CPU:%d\n", this_cpu);
if(this_cpu == param_cpu_id) {
printk(KERN_INFO "read: is on requested CPU: %d\n", smp_processor_id());
}
else {
printk(KERN_INFO "read: not on requested CPU:%d\n", smp_processor_id());
}
put_cpu();
return 0;
}
static ssize_t toy_write(struct file *filep, const char *buffer, size_t len, loff_t *offset){
int this_cpu = get_cpu();
printk(KERN_INFO "write called on CPU:%d\n", this_cpu);
if(this_cpu == param_cpu_id) {
printk(KERN_INFO "write: is on requested CPU: %d\n", smp_processor_id());
}
else {
printk(KERN_INFO "write: not on requested CPU:%d\n", smp_processor_id());
}
put_cpu();
return 0;
}
static int toy_release(struct inode *inodep, struct file *filep){
int this_cpu = get_cpu();
printk(KERN_INFO "release called on CPU:%d\n", this_cpu);
if(this_cpu == param_cpu_id) {
printk(KERN_INFO "release: is on requested CPU: %d\n", smp_processor_id());
}
else {
printk(KERN_INFO "release: not on requested CPU:%d\n", smp_processor_id());
}
put_cpu();
return 0;
}
static int __init toy_init(void) {
int cpu_id;
if(param_cpu_id < 0 || param_cpu_id > 4) {
printk(KERN_INFO "toy: unable to load module without cpu parameter\n");
return -1;
}
printk(KERN_INFO "toy: loading to device driver, param_cpu_id: %d\n", param_cpu_id);
//preempt_disable(); // See notes below
cpu_id = get_cpu();
printk(KERN_INFO "toy init called and running on CPU: %d\n", cpu_id);
misc_register(&toy_device);
//preempt_enable(); // See notes below
put_cpu();
//smp_call_function_single(1,foo,(void *)(uintptr_t) 1,1);
return 0;
}
static void __exit toy_exit(void) {
misc_deregister(&toy_device);
printk(KERN_INFO "toy exit called\n");
}
module_init(toy_init);
module_exit(toy_exit);
Run Code Online (Sandbox Code Playgroud)
上面的代码包含您要求的两种方法,即隔离CPU和在init隔离内核上运行.
在init上get_cpu禁用抢占,即在它之后的任何内容都不会被内核抢占并将在一个核心上运行.注意,这是使用3.16完成的内核,你的里程可能因内核版本而异,但我认为这些API已经存在了很长时间
这是Makefile ......
obj-m += toy.o
all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules
clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean
Run Code Online (Sandbox Code Playgroud)
笔记.get_cpu声明linux/smp.h为
#define get_cpu() ({ preempt_disable(); smp_processor_id(); })
#define put_cpu() preempt_enable()
Run Code Online (Sandbox Code Playgroud)
所以你在打电话preempt_disable之前实际上并不需要打电话get_cpu.get_cpu调用是以下一系列调用的包装器...
preempt_count_inc();
barrier();
Run Code Online (Sandbox Code Playgroud)
和put_cpu真的这样做......
barrier();
if (unlikely(preempt_count_dec_and_test())) {
__preempt_schedule();
}
Run Code Online (Sandbox Code Playgroud)
您可以使用上述内容随心所欲.几乎所有这些都来自以下来源..
Google for ... smp_call_function_single
Linux内核开发,Robert Love的书.
http://derekmolloy.ie/writing-a-linux-kernel-module-part-2-a-character-device/
https://github.com/vsinitsyn/reverse/blob/master/reverse.c