max*_*max 14 python python-3.x pandas statsmodels
如何在python中拟合局部加权回归,以便它可用于预测新数据?
有statsmodels.nonparametric.smoothers_lowess.lowess,但它仅返回原始数据集的估计值; 如此看来只做fit和predict在一起,而不是单独作为我的预期.
scikit-learn总是有一个fit方法允许稍后在新数据上使用该对象predict; 但它没有实现lowess.
Dan*_*ock 11
Lowess非常适合预测(当与插值结合使用时)!我认为代码非常简单 - 如果您有任何问题,请告诉我! Matplolib图
import matplotlib.pyplot as plt
%matplotlib inline
from scipy.interpolate import interp1d
import statsmodels.api as sm
# introduce some floats in our x-values
x = list(range(3, 33)) + [3.2, 6.2]
y = [1,2,1,2,1,1,3,4,5,4,5,6,5,6,7,8,9,10,11,11,12,11,11,10,12,11,11,10,9,8,2,13]
# lowess will return our "smoothed" data with a y value for at every x-value
lowess = sm.nonparametric.lowess(y, x, frac=.3)
# unpack the lowess smoothed points to their values
lowess_x = list(zip(*lowess))[0]
lowess_y = list(zip(*lowess))[1]
# run scipy's interpolation. There is also extrapolation I believe
f = interp1d(lowess_x, lowess_y, bounds_error=False)
xnew = [i/10. for i in range(400)]
# this this generate y values for our xvalues by our interpolator
# it will MISS values outsite of the x window (less than 3, greater than 33)
# There might be a better approach, but you can run a for loop
#and if the value is out of the range, use f(min(lowess_x)) or f(max(lowess_x))
ynew = f(xnew)
plt.plot(x, y, 'o')
plt.plot(lowess_x, lowess_y, '*')
plt.plot(xnew, ynew, '-')
plt.show()
Run Code Online (Sandbox Code Playgroud)
小智 8
我创建了一个名为 的模块moepy,它为 LOWESS 模型(包括拟合/预测)提供类似 sklearn 的 API。这使得可以使用底层局部回归模型进行预测,而不是使用其他答案中描述的插值方法。下面显示了一个极简示例。
# Imports
import numpy as np
import matplotlib.pyplot as plt
from moepy import lowess
# Data generation
x = np.linspace(0, 5, num=150)
y = np.sin(x) + (np.random.normal(size=len(x)))/10
# Model fitting
lowess_model = lowess.Lowess()
lowess_model.fit(x, y)
# Model prediction
x_pred = np.linspace(0, 5, 26)
y_pred = lowess_model.predict(x_pred)
# Plotting
plt.plot(x_pred, y_pred, '--', label='LOWESS', color='k', zorder=3)
plt.scatter(x, y, label='Noisy Sin Wave', color='C1', s=5, zorder=1)
plt.legend(frameon=False)
Run Code Online (Sandbox Code Playgroud)
有关如何使用该模型(及其置信度和预测区间变体)的更详细指南可以在此处找到。
| 归档时间: |
|
| 查看次数: |
15560 次 |
| 最近记录: |