rea*_*ead 2 python tensorflow recurrent-neural-network
似乎tensorflow不支持双向RNN的可变批量大小.在这个例子中,sequence_length
它绑定到batch_size
,这是一个Python整数:
_seq_len = tf.fill([batch_size], tf.constant(n_steps, dtype=tf.int64))
outputs, state1,state2 = rnn.bidirectional_rnn(rnn_fw_cell, rnn_bw_cell, input,
dtype="float",
sequence_length=_seq_len)
Run Code Online (Sandbox Code Playgroud)
如何使用不同的批量大小进行培训和测试?
双向代码适用于可变批量大小.例如,看一下这个测试代码,它会创建一个tf.placeholder(..., shape=(None, input_size))
(这None
意味着批量大小可以变化).
您可以将代码段转换为使用可变批量大小并进行少量修改:
# Compute the batch size based on the shape of the (presumably fed-in) `input`
# tensor. (Assumes that `input = tf.placeholder(..., shape=[None, input_size])`.)
batch_size = tf.shape(input)[0]
_seq_len = tf.fill(tf.expand_dims(batch_size, 0),
tf.constant(n_steps, dtype=tf.int64))
outputs, state1, state2 = rnn.bidirectional_rnn(rnn_fw_cell, rnn_bw_cell, input,
dtype=tf.float32,
sequence_length=_seq_len)
Run Code Online (Sandbox Code Playgroud)